Skip to main content
Log in

Post-translational proteolytic processing and the isolectins of lentil and other Viciae seed lectins

  • Glycoconjugate Journal
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Electrospray mass spectrometry was used to identify precisely the proteolytic cleavage points within, and at the C-termini of, the proprotein forms of four Viciae lectins that give rise to their two-chain forms. The lectins examined were the pea and lentil lectins, favin and theLathyrus odoratus lectin, which represent each of the four genera in this tribe. The molecular mass data showed single β-chain forms for each lectin, with masses consistent with the available sequence and glycopeptide data, indicating that each came from a single proprotein. In contrast, the pea, lentil andL. odoratus α-chains occurred in as many as five forms, due to multiple C-terminal cleavage points. Only favin showed a single α-chain form. The α-chain mass data were again consistent with the sequence information available, except for the lenti lectin α-chain which was re-determined by protein sequencing. The two isolectin forms of this protein were shown to arise from α-chain species with and without residue Lys53. The mass spectrum of concanavalin A was also examined and both the single-chain form and the two fragment forms showed no evidence of C-terminal heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mann M, Meng CK, Fenn JB (1989)Anal Chem 61: 1702–8.

    Google Scholar 

  2. Thibault P, Watson DC, Yaguchi M, Young NM (1993) In:Techniques in Protein Chemistry vol IV (Angeletti RH, ed.) pp. 91–98. San Diego, CA: Academic Press.

    Google Scholar 

  3. Young NM, Watson DC, Yaguchi M, Adar R, Arango R, Rodriguez-Arango E, Sharon N, Blay, PKS, Thibault P (1995)J Biol Chem 270: 2563–70.

    Google Scholar 

  4. Young NM, Watson DC, Thibault P (1995)Glycoconj J 12: 135–41.

    Google Scholar 

  5. Bowles DJ, Marcus SE, Pappin DJC, Findlay JBC, Eliopoulos E, Maycox PR, and Burgess J (1986)J Cell Biol 102: 1284–97.

    Google Scholar 

  6. Carrington DM, Auffret A, Hanke DE (1985)Nature 313: 64–67.

    Google Scholar 

  7. Higgins TJV, Chandler PM, Zurawski G, Button SC, Spencer D (1983)J Biol Chem 258: 9544–49.

    Google Scholar 

  8. Mandal DK, Nieves E, Bhattacharyya L, Orr GA, Roboz J, Yu Q, Brewer CF (1994)Eur J Biochem 221: 547–53.

    Google Scholar 

  9. Rini JM, Hofmann T, Carver JP (1986)Biochem Cell Biol 65: 338–44.

    Google Scholar 

  10. Jackson GED, Young NM (1987)Analyt Biochem 162: 251–56.

    Google Scholar 

  11. Hoedemaeker FJ, Richardson M, Diaz CL, de Pater BS, Kijne JW (1994)Plant Mol Biol 24: 75–81.

    Google Scholar 

  12. Howard IK, Sage HJ, Stein MD, Young NM, Leon MA, Dyckes DF (1971)J Biol Chem 246: 1590–95.

    Google Scholar 

  13. Rougé P, Borrebaek CAK, Richardson M, Yarwood A (1987)Glycoconj J 4: 371–78.

    Google Scholar 

  14. Bourne Y, Nésa M-P, Rougé P, Mazurier J, Legrand D, Spik G, Montreuil J, Cambillau C (1992)J Mol Biol 227: 938–41.

    Google Scholar 

  15. Loris R, Steyaert J, Maes D, Lisgarten J, Pickersgill R, Wyns L (1993)Biochemistry 32: 8772–81; correction, 14229.

    Google Scholar 

  16. Reeke GN, Becker JW (1986)Science 234: 1108–11.

    Google Scholar 

  17. Rini JM, Hardman KD, Einspahr H, Suddath FL, Carver JP (1993)J Biol Chem 268: 10126–32.

    Google Scholar 

  18. Young NM, Williams RE, Roy C, Yaguchi M (1982)Can J Biochem 60: 933–41.

    Google Scholar 

  19. Ashford DA, Dwek RA, Rademacher TW, Lis H, Sharon N (1991)Carbohydr Res 213: 215–27.

    Google Scholar 

  20. Hopp TP, Hemperly JJ, Cunningham BA (1982)J Biol Chem 257: 4473–83.

    Google Scholar 

  21. Foriers A, Lebrun E, Van Rapenbusch R, de Neve R, Strosberg AD (1981)J Biol Chem 256: 5550–60.

    Google Scholar 

  22. Sletten K, Kolberg J, Michaelsen TE (1983)FEBS Lett 156: 253–56.

    Google Scholar 

  23. Bhattacharyya L, Brewer CF (1990)J Chromatog 502: 131–42.

    Google Scholar 

  24. Loo JA, Loo RRO, Light KJ, Edmonds CG, Smith RD (1992)Analyt Chem 64: 81–88.

    Google Scholar 

  25. Chait BT, Wang R, Beavis RC, Kent SBH (1993)Science 262: 89–92.

    Google Scholar 

  26. Abe Y, Shirane K, Yokosawa H, Matsushita H, Mitta M, Kato I, Ishii S-I (1993)J Biol Chem 268: 3525–29.

    Google Scholar 

  27. Dessen A, Gupta D, Sabesan S, Brewer CF, Sacchettini JC (1995)Biochemistry 34: 4933–42.

    Google Scholar 

  28. Etzler ME, Gupta S, Borrebaeck CAK (1981)J Biol Chem 256: 2367–70.

    Google Scholar 

  29. Etzler ME (1994)Biochemistry 33: 9778–83.

    Google Scholar 

  30. Chrispeels MJ, Raikhel NV (1992)Cell 68: 613–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, N.M., Watson, D.C. & Thibault, P. Post-translational proteolytic processing and the isolectins of lentil and other Viciae seed lectins. Glycoconjugate J 13, 575–583 (1996). https://doi.org/10.1007/BF00731445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731445

Keywords

Navigation