Skip to main content
Log in

The interaction between wheat germ agglutinin and membrane incorporated glycophorin A. An optical binding study

  • Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A novel integrated optical technique is used to monitor the kinetics of incorporation of glycophorin A (GPA) from solution into a planar dimyristoylphosphatidylcholine-cholesterol bilayer membrane, and the subsequent binding of wheat germ agglutinin (WGA) to the membrane-incorporated GPA. The technique significantly improves the attainable accuracy of kinetic measurements. The number of bound molecules can be determined to a precision of ca ± 80 mol µm−2. Our results show that GPA incorporates spontaneously into the bilayer. Binding of WGA to GPA is optimal in the presence of human serum albumin, and can be reversed byN-acetyl-d-glucosamine. The kinetics of the binding are consistent with the presence of two classes of kinetically distinguishable binding sites with association rates of 2.0×104 and 9.6×102 M−1 s−1, and dissociation rates of 2.7×10−3 s−1 and <10−5 s−1, respectively. A stoichiometry of 4 WGA monomers per GPA monomer was determined as characteristic of the overall binding interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMPC:

dimyristoylphosphatidylcholine

GlcNAc:

N-acetyl-d-glucosamine

GPA:

glycophorin A

HSA:

human serum albumin

NeuNAc:

N-acetyl-d-neuraminic acid

TE:

transverse electric

TM:

transverse magnetic

WGA:

wheat germ agglutinin

References

  1. Nicolson GL (1974)Int Rec Cyt 39:89–190

    Google Scholar 

  2. Lis H, Sharon N (1981) InThe Biochemistry of Plants: A Comprehensive Treatise, Proteins and Nucleic Acids. (Marcus A, ed.)Vol. 6: pp. 371–447. New York: Academic Press.

    Google Scholar 

  3. Goldstein IJ, Poretz RD (1986) InThe Lectins: Properties, Function, and Application in Biology and Medicine (Liener IE, Sharon N, Goldstein IJ, eds) pp. 43–247. Orlando, FL: Academic Press.

    Google Scholar 

  4. Sharon N, Lis H (1975)Methods Membr Biol 3:147–200.

    Google Scholar 

  5. Lis H, Sharon N (1977)The Antigens 4:464–529.

    Google Scholar 

  6. Scatchard G (1949)Ann N Y Acad Sci 51:660–72.

    Google Scholar 

  7. Adair WL, Kornfeld S (1974)J Biol Chem 249:4696–704.

    Google Scholar 

  8. Obrenovitch A, Sene C, Roche AC, Monsigny M, Visher P, Hughes RC (1981)Biochimie C3:169–75.

    Google Scholar 

  9. Cuatrecasas P (1973)Biochemistry 12:1312–23.

    Google Scholar 

  10. Bornens M, Karsenti E, Acrameas S (1976)Eur J Biochem 65:61–69.

    Google Scholar 

  11. Reisner Y, Lis H, Sharon N (1976)Exp Cell Res 97:445–48.

    Google Scholar 

  12. Stanley P, Carver JP (1977)Proc Natl Acad Sci USA 74:5056–59.

    Google Scholar 

  13. Purjanski A, Ravid A, Sharon N (1978)Biochim Biophys Acta 508:137–46.

    Google Scholar 

  14. Gordon JA, Young RK (1979)J Biol Chem 254:1932–37.

    Google Scholar 

  15. Lovrien RE, Anderson RA (1980)J Cell Biol 85:534–48.

    Google Scholar 

  16. Bhattacharyya L, Fant J, Lonn H, Brewer CF (1990)Biochemistry 29:7523–30.

    Google Scholar 

  17. Bhattacharyya L, Brewer CF (1992)Eur J Biochem 208:179–85.

    Google Scholar 

  18. Wright CS (1992)J Biol Chem 267:14345–52.

    Google Scholar 

  19. Wright CS, Jaeger J (1993)J Mol Biol 232:620–38.

    Google Scholar 

  20. Weis WI, Drickamer K, Hendricksen WA (1992)Nature 360:127–34.

    Google Scholar 

  21. Bhavanandan VP, Katlic AW (1979)J Biol Chem 254:4000–8.

    Google Scholar 

  22. Peters BP, Ebisu S, Goldstein IJ, Flashner M (1979)Biochemistry 18:5505–11.

    Google Scholar 

  23. Monsigny M, Roche A-C, Sene C, Maget-Dana R, Delmotte F (1980)Eur J Biochem 104:147–53.

    Google Scholar 

  24. Ganguly P, Fosett NG (1981)Blood 57:343–52.

    Google Scholar 

  25. Johnson RJ, Simpson S, Van Epps DE, Chenoweth DE (1992)J Leukocyte Biol 52:3–10.

    Google Scholar 

  26. Tomita M, Marchesi VT (1975)Proc Natl Acad Sci USA 72:2964–68.

    Google Scholar 

  27. Thomas DB, Winzler RJ (1969)J Biol Chem 244:5943–46.

    Google Scholar 

  28. Irimura T, Tsugi T, Tagami S, Yamamoto K, Osawa E (1981)Biochemistry 20:560–66.

    Google Scholar 

  29. Yoshima H, Furthmayr H, Kobata A (1980)J Biol Chem 255:9713–18.

    Google Scholar 

  30. Springer GF, Nagai Y, Tegtmeyer H (1966)Biochemistry 5:3254–72.

    Google Scholar 

  31. Enegren BJ, Burness ATH (1977)Nature 268:536–37.

    Google Scholar 

  32. Wright CS (1987)J Mol Biol 194:501–29.

    Google Scholar 

  33. Grant CWM, McConnell HM (1974)Proc Natl Acad Sci USA 71:4653–57.

    Google Scholar 

  34. Sharom FJ, Barrat DG, Grant CWM (1977)Proc Natl Acad Sci USA 74:2751–55.

    Google Scholar 

  35. Ketis NV, Girdlestone J, Grant CWM (1980)Proc Natl Acad Sci USA 77:3788–90.

    Google Scholar 

  36. Ramsden JJ (1993)J Statist Phys 73:853–77.

    Google Scholar 

  37. Roberts GG (1990)Langmuir-Blodgett Films. New York: Plenum.

    Google Scholar 

  38. Poste G, Moss C (1972)Prog Surf Sci 2:139–232.

    Google Scholar 

  39. Schaaf P, Dejardin PH, Schmitt A (1985)Rev Phys Appl 20:631–40.

    Google Scholar 

  40. Wright CS (1981)J Mol Biol 145:453–61.

    Google Scholar 

  41. Tiefenthaler K, Lukosz W (1989)J Opt Soc Am B 6:209–20.

    Google Scholar 

  42. de Feijter JA, Benjamins J, Veer FA (1978)Biopolymers 17:1759–72.

    Google Scholar 

  43. Schindler H (1980)FEBS Lett 122:77–79.

    Google Scholar 

  44. Langmuir I (1919)Trans Faraday Soc 15:62–74.

    Google Scholar 

  45. Schaaf P, Talbot J (1989)J Chem Phys 91:4401–9.

    Google Scholar 

  46. von Smoluchowski M (1916)Phys Z 17:557–99.

    Google Scholar 

  47. Hinrichsen EL, Feder J, Jøssang T (1986)J. Statist Phys 44:793–827.

    Google Scholar 

  48. Swendsen R (1981)Phys Rev A 24:504–8.

    Google Scholar 

  49. Charlwood PA (1957)J Am Chem Soc 79:776–81.

    Google Scholar 

  50. Schurr JM, Schmitz KS (1976)J Phys Chem 80:1934–36.

    Google Scholar 

  51. Armstrong FA, Hill HAO, Walton NJ (1986)Q Rev Biophys 18:261–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsden, J.J., Wright, C.S. The interaction between wheat germ agglutinin and membrane incorporated glycophorin A. An optical binding study. Glycoconjugate J 12, 113–121 (1995). https://doi.org/10.1007/BF00731354

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731354

Keywords

Navigation