Glycoconjugate Journal

, Volume 11, Issue 6, pp 558–571 | Cite as

Synthesis of neoglycopeptides and analyses of their biodistributionin vivo to identify tissue specific uptake and novel putative membrane lectins

  • Dipti Gupta
  • Avadhesha Surolia
Lectin Papers


Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the β-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.


neoglycopeptides biodistribution membrane lectins in vivo uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sharon N, Lis H (1993)Sci Am 268:82–89.Google Scholar
  2. 2.
    Drickamer K, Carver J (1992)Current Opin Struct Biol 2:653–801.Google Scholar
  3. 3.
    Ashwell G, Morell AG (1977)Trends Biochem Sci 2:76–8.Google Scholar
  4. 4.
    Barondes SH (1981)Annu Rev Biochem 50:207–31.Google Scholar
  5. 5.
    Sharon N, Lis H (1989)Science 246:227–34.Google Scholar
  6. 6.
    Karlsson K-A (1991)Trends Pharmacol Sci 12:265–72.Google Scholar
  7. 7.
    Ashwell G, Morell AG (1974)Adv Enzymol 41:91–128.Google Scholar
  8. 8.
    Rogers JC, Kornfield S (1971)Biochem Biophys Res Commun 45:622–9.Google Scholar
  9. 9.
    Surolia A, Bachhawat BK (1977)Biochim Biophys Acta 497:760–5.Google Scholar
  10. 10.
    Ghosh PC, Bachhawat BK, Surolia A (1981)Arch Biochem Biophys 206:454–7.Google Scholar
  11. 11.
    Robbins JC, Lam MH, Tripp, CS, Bugianesi M, Ponpipom N, Shen TY (1981)Proc Natl Acad Sci USA 78:7294–98.Google Scholar
  12. 12.
    Lee, RT, Lin P, Lee YC (1984)Biochemistry 23:4255–61.Google Scholar
  13. 13.
    Hardy MR, Townsend RR, Parkhurst SM, Lee YC (1985)Biochemistry 24:22–8.Google Scholar
  14. 14.
    Mauk MM, Gamble RC, Baldeschwieler JD (1980)Proc Natl Acad Sci USA 77:4430–4.Google Scholar
  15. 15.
    Fournet B, Montreuil J, Strecker G, Dorland L, Haverkamp J, Vliegenthart JFG, Binette JP, Schmid K (1978)Biochemistry 17:5206–14.Google Scholar
  16. 16.
    Mizuochi T, Taniguchi T, Shimizu A, Kobata A (1982)J Immunol 129:2016–20.Google Scholar
  17. 17.
    Tsuji T, Yamamoto K, Irimura T, Osawa T (1981)Biochem J 195:691–9.Google Scholar
  18. 18.
    Li Y-T, Li S-C (1972)Methods Enzymol 28:702–13.Google Scholar
  19. 19.
    Li S-C, Mazzota MY, Chien S-F, Li Y-T (1975)J Biol Chem 250:6786–91.Google Scholar
  20. 20.
    March SC, Parikh I, Cuatrecasas P (1974)Anal Biochem 60:149–52.Google Scholar
  21. 21.
    Takasaki S, Mizuochi T, Kobata A (1982)Methods Enzymol 83:263–8.Google Scholar
  22. 22.
    Warren L (1959)J Biol Chem 234:167–75.Google Scholar
  23. 23.
    Yamamoto K, Tsuji T, Osawa T (1993) InMethods in Molecular Biology (Hounsell EF, ed.) pp. 17–34. Totowa, NJ: Humana Press.Google Scholar
  24. 24.
    Surolia A, Ahmad AA, Bachhawat BK (1975)Biochim Biophys Acta 404:83–92.Google Scholar
  25. 25.
    Ogata S, Muramatsu T, Kobata A (1975)J Biochem 78:687–96.Google Scholar
  26. 26.
    Hayase T, Rice KG, Dziegielewaska KD, Kuhlenschmidt M, Reilly T, Lee YC (1992)Biochemistry 31:4915–21.Google Scholar
  27. 27.
    Hardy MR, Townsend RR, Lee YC (1988)Anal Biochem 170:54–62.Google Scholar
  28. 28.
    Kallin E, Leonn H, Norberg T, Elofsson M (1989)J Carbohyd Chem 8:597–611.Google Scholar
  29. 29.
    Bodanski M (1979) InThe Peptides: Analysis, Synthesis, Biology, Vol. 1 (Gross E, Meinfoser J, eds.) pp. 105–196. New York: Academic Press.Google Scholar
  30. 30.
    Neises B, Steglich W (1978)Angew Chem Int Ed Eng 17:522–24.Google Scholar
  31. 31.
    Anderson GW, Zimmerman JE, Callahan F (1964)J Am Chem Soc 86:1839–42.Google Scholar
  32. 32.
    Mori H, Mu B, Williams GM (1982)Exp Mol Pathol 37:101–10.Google Scholar
  33. 33.
    Williams GM, Bermudez E, Scarmuzzino D (1977)In Vitro 13:809–17.Google Scholar
  34. 34.
    Munson PJ, Rodbard D (1980)Anal Biochem 51:660–72.Google Scholar
  35. 35.
    Mahanta SK, Krishnasastry MV, Surolia A (1990)Biochem J 265:731–40.Google Scholar
  36. 36.
    Hortin GL (1990)Anal Biochem 191:262–7.Google Scholar
  37. 37.
    Townsend RR, Hilliker E, Li Y-T, Laine R, Bell WR, Lee YC (1982)J Biol Chem 257:9704–10.Google Scholar
  38. 38.
    McDougall IR, Dunnick JK, Goris ML, Kriss JP (1975)J Nucl Med 16:488–91.Google Scholar
  39. 39.
    Takasaki S, Kobata A (1986)Biochemistry 25:5709–15.Google Scholar
  40. 40.
    van Berkel TJC, Kruijt JK, Spanjer HH, Nagelkerke JF, Harkes L, Lempen H-JM (1985)J Biol Chem 260:2694–9.Google Scholar
  41. 41.
    Regoeczi E, Chindemi PA, Hatton MWC, Berry LR (1980)Arch Biochem Biophys 205:76–84.Google Scholar
  42. 42.
    Gregoriadis G, Morell AG, Sternlieb I, Sheinberg IH (1970)J Biol Chem 245:5833–7.Google Scholar
  43. 43.
    Lodish HF (1991)TIBS 16:374–7.Google Scholar
  44. 44.
    Baenziger JU, Fiete D (1980)Cell 22:611–20.Google Scholar
  45. 45.
    Townsend RR, Hardy MR, Wong TC, Lee YC (1986)Biochemistry 25:5716–25.Google Scholar
  46. 46.
    Lee YC, Townsend RR, Hardy MR, Lonngren J, Arnap J, Haraldson M, Lonn H (1983)J Biol Chem 258:198–203.Google Scholar
  47. 47.
    Mumtaz S, Ghosh PC, Bachhawat BK (1991)Glycobiology 1:505–10.Google Scholar
  48. 48.
    Manger ID, Rademacher TW, Dwek RA (1992)Biochemistry 31:10724–32.Google Scholar
  49. 49.
    Manger ID, Wong SYC, Rademacher TW, Dwek RA (1992)Biochemistry 31:10733–40.Google Scholar
  50. 50.
    Likhosherstov LM, Novikova OS, Derevitskaja VA, Kochetkov (1986)Carbohyd Res 146:C1-C5.Google Scholar
  51. 51.
    Rothenberg BE, Hayes BE, Toomre D, Manzi AE, Varki A (1993)Proc Natl Acad Sci USA 90:11939–43.Google Scholar
  52. 52.
    Tang PW, Gool HC, Hardy M, Lee YC, Feizi T (1985)Biochem Biophys Res Commun 132:474–80.Google Scholar
  53. 53.
    Balaji PV, Qasba PK, Rao VSR (1993)Biochemistry 32:12599–11.Google Scholar
  54. 54.
    Kornfeld K, Reitman ML, Kornfeld R (1981)J Biol Chem 256:6633–40.Google Scholar
  55. 55.
    Maynard Y, Baenziger JU (1981)J Biol Chem 256:8063–8.Google Scholar
  56. 56.
    Connoly DT, Townsend RR, Kawaguchi K, Bell WR, Lee YC (1982)J Biol Chem 257:939–45.Google Scholar
  57. 57.
    Nissander UK, Storm G, Peters PAM, Crommelin DJA (1990) InBiodegradable Polymers as Drug Delivery Systems (Chasin M, Langer R, eds.) pp. 261–338. New York: Marcel Dekker Inc.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Dipti Gupta
    • 1
  • Avadhesha Surolia
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations