Skip to main content
Log in

Comparison of the glycolipid-binding specificities of cholera toxin and porcineEscherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine

  • Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The binding specificities of cholera toxin andEscherichia coli heat-labile enterotoxin were investigated by binding of125I-labelled toxins to reference glycosphingolipids separated on thin-layer chromatograms and coated in microtitre wells. The binding of cholera toxin was restricted to the GM1 ganglioside. The heat-labile toxin showed the highest affinity for GM1 but also bound, though less strongly, to the GM2, GD2 and GD1b gangliosides and to the non-acid glycosphingolipids gangliotetraosylceramide and lactoneotetraosylceramide. The infant rabbit small intestine, a model system for diarrhoea induced by the toxins, was shown to contain two receptor-active glycosphingolipids for the heat-labile toxin, GM1 ganglioside and lactoneotetraosylceramide, whereas only the GM1 ganglioside was receptor-active for cholera toxin. Preliminary evidence was obtained, indicating that epithelial cells of human small intestine also contain lactoneotetraosylceramide and similar sequences. By computer-based molecular modelling, lactoneotetraosylceramide was docked into the active site of the heat-labile toxin, using the known crystal structure of the toxin in complex with lactose. Interactions which may explain the relatively high toxin affinity for this receptor were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

cholera toxin

CT-B:

B-subunits of cholera toxin

LT:

Escherichia coli heat-labile enterotoxin

hLT:

humanEscherichia coli heat-labile enterotoxin

pLT:

porcineEscherichia coli heat-labile enterotoxin

EI:

electron ionization

References

  1. Van Heyningen WE, Carpenter CCJ, Pierce NF, Greenough WB (1971)J Infect Dis 124:415–28.

    Google Scholar 

  2. Holmgren J, Lönnroth I, Svennerholm L (1973)Scand J Infect Dis 5:77–78.

    Google Scholar 

  3. Holmgren J, Lönnroth I, Svennerholm L (1973)Infect Immun 8:208–14.

    Google Scholar 

  4. King CA, Van Heyningen WE (1973)J Infect Dis 727:639–47.

    Google Scholar 

  5. Cuatrecases P (1973)Biochemistry 12:3558–66.

    Google Scholar 

  6. Holmgren J (1973)Infect Immun 8:851–59.

    Google Scholar 

  7. Moss J, Garrison S, Fishman PH, Richardson SH (1979)J Clin Invest 64:381–84.

    Google Scholar 

  8. Moss J, Osborne JC, Fishman PH, Nakaya S, Robertson DC (1981)J Biol Chem 256:12861–65.

    Google Scholar 

  9. Spangler BD (1992)Microbiol Rev 56:622–47.

    Google Scholar 

  10. Holmgren J, Fredman P, Lindblad M, Svennerholm A-M, Svennerholm L (1982)Infect Immun 38:424–33.

    Google Scholar 

  11. Holmgren J, Lindblad M, Fredman P, Svennerholm L, Myrvold H (1985)Gastroeneterology 89:27–35.

    Google Scholar 

  12. Griffiths SL, Finkelstein RA, Critchley DR (1986)Biochem J 238:313–22.

    Google Scholar 

  13. Karlsson K-A (1987)Methods Enzymol 138:212–20.

    Google Scholar 

  14. Samuelsson BE, Pimlott W, Karlsson K-A (1990)Methods Enzymol 193:623–46.

    Google Scholar 

  15. Yang H, Hakomori S-i (1971)J Biol Chem 246:1192–200.

    Google Scholar 

  16. Stellner K, Saito H, Hakomori S-i (1973)Arch Biochem Biophys 155:464–72.

    Google Scholar 

  17. Koerner Jr, TAW, Prestegard JH, Demou PC, Yu RK (1983)Biochemistry 22:2676–87.

    Google Scholar 

  18. Karlsson K-A, Strömberg N (1987)Methods Enzymol 138:220–32.

    Google Scholar 

  19. Hirst TH, Hardy SJS, Lindblad M, Sanchez J, Holmgren J (1988) InAdvances in Research on Cholera and Related Diarrheas, Vol 4 (Kuwahara S, Pierce NF, eds) pp. 259–69. Tokyo: KTK Scientific Publishers.

    Google Scholar 

  20. Aggarwal BB, Eessalu TE, Hass PE (1985)Nature 318:665–67.

    Google Scholar 

  21. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.

    Google Scholar 

  22. Waldi D (1962) InDünnschicht-Chromatographie (Stahl E, ed.) pp. 496–515. Berlin: Springer-Verlag.

    Google Scholar 

  23. Svennerholm L (1963)J Neurochem 10:613–23.

    Google Scholar 

  24. Larson G, Karlsson H, Hansson GC, Pimlott W (1987)Carbohydr Res 161:281–90.

    Google Scholar 

  25. Karlsson K-A (1974)Biochemistry 13:3643–47.

    Google Scholar 

  26. Mayo SL, Olafson BD, Goddard III WA (1990)J Phys Chem 94:8897–909.

    Google Scholar 

  27. Sixma TK, Pronk SE, Falk KH, van Zanten BAM, Berghuis AM, Hol WGJ (1991)Nature 355:561–64.

    Google Scholar 

  28. van Gunsteren WF, Karplus M (1980)J Comput Chem 1:266–74.

    Google Scholar 

  29. Karlsson K-A (1976) InGlycolipid Methodology (Witting LA, ed.) pp. 97–122, Champaign, Ill.: American Oil Society.

    Google Scholar 

  30. Karlsson K-A (1978)Progr Chem Fats Other Lipids 16:207–30.

    Google Scholar 

  31. Dabrowski J, Hanfland P, Egge H (1982)Methods Enzymol 83:69–86.

    Google Scholar 

  32. Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V (1988)Infect Immun 56:1748–53.

    Google Scholar 

  33. Dallas WS, Falkow, S (1980)Nature 288:499–501.

    Google Scholar 

  34. Kobata A (1992)Eur J Biochem 209:483–501.

    Google Scholar 

  35. Pacuszka T, Fishman PF (1990)J Biol Chem 265:7673–78.

    Google Scholar 

  36. Björk S, Breimer MB, Hansson GC, Karlsson K-A, Leffler H (1987)J Biol Chem 262:6758–65.

    Google Scholar 

  37. Teneberg S, Ångström J, Jovall P-Å, Karlsson, K-A (1994)J Biol Chem 269:8554–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teneberg, S., Hirst, T.R., Ångström, J. et al. Comparison of the glycolipid-binding specificities of cholera toxin and porcineEscherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Glycoconjugate J 11, 533–540 (1994). https://doi.org/10.1007/BF00731304

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731304

Keywords

Navigation