Skip to main content
Log in

A comparative assessment of TLC overlay technique and microwell adsorption assay in the examination of influenza A and Sendai virus specificities towards oligosaccharides and sialic acid linkages of gangliosides

  • Non-Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Influenza A and Sendai viruses bind toneolacto-series gangliosides isolated from human granulocytes. Differences in receptor specificity of influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and parainfluenza Sendai virus (HNF1, Z-strain) were determined by two direct solid phase binding assays: the overlay technique, which combines high-resolution in the separation of gangliosides on thin-layer chromatograms with direct binding; and the microwell adsorption assay as a convenient binding assay which is performed in microtitre wells to estimate the avidity of binding to an isolated ganglioside. Both methods were applied for comparative binding studies. Viruses were found to exhibit specificity for oligosaccharides and sialic acids as well as for chain length of the neutral carbohydrate backbone, whereas differing fatty acids (C24:1 and C16:0) in the ceramide portion had no impact on virus adsorption. Terminal sialyloligosaccharides Neu5Acα2-3Galβ1-4Glc-R of GM3, and Neu5Acα2-3Galβ1-4GlcNAc-R as well as Neu5Acα2-6Galβ1-4GlcNAc-R ofneolacto-series gangliosides with nLcOse4Cer and nLcOse6Cer backbone, exhibited significant specific receptor activity towards the different viruses. To compare the data revealed from both test systems, values of virus binding were ascertained by a non-parametric statistical approach based on rank correlation. The rank correlation coefficientr s was calculated according to Spearman from each virus binding towards GM3, IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6SCer. The rank correlation coefficients 0.74, 0.95 and 0.92, which were determined for A/PR/8/34 (H1N1), A/X-31 (H3N2) and Sendai virus (HNF1, Z-strain), respectively, indicated that both assays generate highly correlated experimental data. Based on these results, analyses of virus binding on thin-layer chromatograms as well as in microwells were found equivalent tools for ganglioside receptor studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S (1981)Ann Rev Biochem 50:733–64.

    Google Scholar 

  2. Thompson TE, Tillack TW (1985)Ann Rev Biophys Biophys Chem 14:361–86.

    Google Scholar 

  3. Stults CLM, Sweeley CC, Macher BA (1989)Methods Enzymol 179:167–214.

    Google Scholar 

  4. Zeller BC, Marchase RB (1992)Am J Physiol 31:C1341–55.

    Google Scholar 

  5. Schauer R (1988)Adv Exp Med Biol 228:47–72.

    Google Scholar 

  6. Hakomori S (1984) InThe Cell Membrane (Habes E, ed.) pp. 181–201. New York: Plenum Press.

    Google Scholar 

  7. Karlsson KA (1989)Annu Rev Biochem 58:309–50.

    Google Scholar 

  8. Paulson JC (1985) InThe Receptors, Vol. II (Conn PM, ed.) pp. 131–219. Orlando: Academic Press.

    Google Scholar 

  9. Markwell MAK, Paulson JC (1980)Proc Natl Acad Sci USA 77:5693–97.

    Google Scholar 

  10. Suzuki Y, Nakao T, Ito T, Watanabe N, Toda Y, Guiyun X, Suzuki T, Kobayashi T, Kimura Y, Yamada A, Sugawara K, Nishimura H, Kitame F, Nakamura K, Deya E, Kiso M, Hasegawa A (1992)Virology 189:121–31.

    Google Scholar 

  11. Markwell MAK, Moss J, Hom BE, Fishman PH, Svennerholm L (1986)Virology 155:356–64.

    Google Scholar 

  12. Wilschut J (1991) InMembrane Fusion (Wilschut J, Hoekstra D, eds.) pp. 89–126. New York: Marcel Dekker.

    Google Scholar 

  13. Bergelson LD, Burkinskaya AD, Prokazova NV, Shaposhnikova GI, Kocharov SL, Shevchenko VP, Kornilaeva GV, Fomina-Ageeva EV (1982)Eur J Biochem 128:467–74.

    Google Scholar 

  14. Holmgren J, Elwing H, Fredman P, Svennerholm L (1980)Eur J Biochem 106:371–79.

    Google Scholar 

  15. Hansson GC, Karlsson KA, Larson G, Strömberg N, Thurin J, Örvell C, Norrby E (1984)FEBS Lett 170:15–18.

    Google Scholar 

  16. Karlsson KA, Strömberg N (1987)Methods Enzymol 138:220–32.

    Google Scholar 

  17. Müthing J, Unland F, Heitmann D, Orlich M, Hanisch FG, Peter-Katalinić J, Knäuper V, Tschesche H, Kelm S, Schauer R, Lehmann J (1993)Glycoconjugate J 10:120–26.

    Google Scholar 

  18. Folch J, Lees M, Sloane Stanley GH (1957)J Biol Chem 226:497–509.

    Google Scholar 

  19. Müthing J, Egge H, Kniep B, Mühlradt PF (1987)Eur J Biochem 163:407–16.

    Google Scholar 

  20. Ueno K, Ando S, Yu RK (1978)J Lipid Res 19:863–711.

    Google Scholar 

  21. Svennerholm L (1957)Biochim Biophys Acta 24:604–11.

    Google Scholar 

  22. Müthing J, Heitmann D (1993)Anal Biochem 208:121–24.

    Google Scholar 

  23. Orlich M, Khatchikian D, Teigler A, Rott R (1990)Virology 176:531–38.

    Google Scholar 

  24. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.

    Google Scholar 

  25. Olds EG (1938)Ann Math Statist 9:133–48.

    Google Scholar 

  26. Olds EG (1949)Ann Math Statist 20:117–18.

    Google Scholar 

  27. Siegel S, Castellan NJ (1988) InNonparametric Statistics, 2nd ed., hardcover text edition. New York: McGraw-Hill, Inc.

    Google Scholar 

  28. Paulson JC, Rogers GN (1987)Methods Enzymol 138:162–68.

    Google Scholar 

  29. Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K (1991)Virology 182:475–85.

    Google Scholar 

  30. Suzuki Y, Nagao Y, Kato H, Matsumoto M, Nerome K, Nakajima K, Nobusawa E (1986)J Biol Chem 36:17057–61.

    Google Scholar 

  31. Umeda M, Nojima S, Inoue K (1984)Virology 133:172–82.

    Google Scholar 

  32. Yiu SCK, Lingwood CA (1992)Anal Biochem 202:188–92.

    Google Scholar 

  33. Sakkar DP, Blumenthal R (1987)Membr Biochem 7:231–47.

    Google Scholar 

  34. Huang RTC (1983)Lipids 18:489–92.

    Google Scholar 

  35. Reuter G, Schauer R (1988)Glycoconjugate J 5:133–35.

    Google Scholar 

  36. IUPAC-IUB, Commission on Biochemical Nomenclature (1977)Eur J Biochem 79:11–21.

    Google Scholar 

  37. Svennerholm L (1963)J Neurochem 10:613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: BSA, bovine serum albumin; GSL(s), glycosphingolipids; HPTLC, high performance thin-layer chromatography; PBS, phosphate buffered saline; Neu5Ac,N-acetylneuraminic acid [35];r s = rank correlation coefficient according to Spearman. The designation of the glycosphingolipids follows the IUPAC-IUB recommendations [36]. LacCer or lactosylceramide, Galβ1-4Glcβ1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1Cer; GM3 (according to Svennerholm [37]) or II3Neu5AcLacCer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müthing, J., Unland, F. A comparative assessment of TLC overlay technique and microwell adsorption assay in the examination of influenza A and Sendai virus specificities towards oligosaccharides and sialic acid linkages of gangliosides. Glycoconjugate J 11, 486–492 (1994). https://doi.org/10.1007/BF00731285

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731285

Keywords

Navigation