Skip to main content
Log in

Further evidence by site-directed mutagenesis that conserved hydrophilic residues form a carbohydrate-binding site of human galectin-1

  • Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

To identify critical amino acid residues for carbohydrate binding of galectins (soluble β-galactoside-binding lectins found in the animal kingdom), site-directed mutagenesis was performed on human galectin-1. On the basis of the previous results (Hirabayashi and Kasai (1992)J Biol Chem 266:23648-53), more systematic mutagenesis experiments were performed in order to confirm the concept that conserved hydrophilic residues play a central role. When a homologous substitution was made for highly conserved His44, Arg48 or Asn61, the resultant mutant (H44Q, R48H or N61D, respectively) almost completely lacked carbohydrate-binding ability, as found previously for Asn46, Glu71 and Arg73 mutants. This suggests these six hydrophilic residues are essential. On the other hand, when less conserved Lys63, Arg111 or Asp125 were substituted, the resultant mutant (K63H, R111H or D125E, respectively) retained almost the same affinities to asialofetuin and lactose as the wild-type galectin. Therefore, none of these residues is directly involved in the binding. These results, together with the previous observation that the above six essential residues are all encoded in the largest exon of the gene and are located close to each other in the central, most hydrophilic region of the protein, suggest that the residues form a carbohydrate-binding site of galectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA-PBS:

2mm EDTA, 20mm Na-phosphate, pH 7.2, 150mm NaCl

MEPBS:

EDTA-PBS containing 4mm β-mercaptoethanol

IPTG:

isopropyl-β-(d)-thiogalactoside

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Teichberg VI, Silman I, Beitsh DD, Resheff G (1975)Proc Natl Acad Sci USA 72:1383–7.

    Google Scholar 

  2. Hirabayashi J, Kasai K (1993)Glycobiology 3:297–304.

    Google Scholar 

  3. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes RC, Kasai K, Leffler H, Liu F-T, Lotan R, Mercurio AM, Monsigny M, Pilli S, Poirer F, Raz A, Rigby PWJ, Rini JM, Wang JL (1994)Cell 76:597–8.

    Google Scholar 

  4. Hirabayashi J, Satoh M, Kasai K (1992)J Biol Chem 267:15485–90.

    Google Scholar 

  5. Oda Y, Herrmann J, Gitt M, Turck CW, Burlingame AL, Barondes SH, Leffler H (1993)J Biol Chem 268:5929–39.

    Google Scholar 

  6. Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Muller WEG (1993)Glycobiology 3:179–84.

    Google Scholar 

  7. Hirabayashi J, Kasai K (1991)J Biol Chem 266:23648–53.

    Google Scholar 

  8. Hirabayashi J, Kasai K (1984)Biochem Biophys Res Commun 122:938–44.

    Google Scholar 

  9. Hirabayashi J, Kawasaki H, Suzuki K, Kasai K (1987)J Biochem 101:987–95.

    Google Scholar 

  10. Hirabayashi J, Kasai K (1988)J Biochem 104:1–4.

    Google Scholar 

  11. Hirabayashi J, Ayaki H, Soma G, Kasai K (1989)Biochim Biophys Acta 1008:85–91.

    Google Scholar 

  12. Abbott WM, Feizi T (1989)Biochem J 259:291–4.

    Google Scholar 

  13. Sharma A, Chemelli R, Allen HJ (1990)Biochemistry 29:5309–14.

    Google Scholar 

  14. Bladier D, Le Caer JP, Joubert R, Caron M, Rossier J (1991)Neurochem Int 18:275–81.

    Google Scholar 

  15. Couroud PO, Cadesentini-Borzocz D, Bringman JS, Griffith J, McGrogan M, Nedwin GE (1989)J Biol Chem 264:1310–16.

    Google Scholar 

  16. Quiocho FA (1986)Annu Rev Biochem 55:287–315.

    Google Scholar 

  17. Weis WI, Drickamer K, Hendrickson WA (1992)Nature 360:127–35.

    Google Scholar 

  18. Ackerman SJ, Corrette SE, Rosenberg HF, Bennett JC, Mastrianni DM, Nicholson-Weller A, Weller PF, Chin DT, Tennen DG (1993)J Immunol 150:456–68.

    Google Scholar 

  19. Ohyama Y, Kasai K (1988)J Biochem 104:173–7.

    Google Scholar 

  20. Gitt MA, Barondes SH (1991)Biochemistry 30:82–9.

    Google Scholar 

  21. Gitt MA, Massa SM, Leffler H, Barondes SH (1992)J Biol Chem 267:10601–6.

    Google Scholar 

  22. Chiariotti L, Wells V, Bruni CB, Mallucci L (1991)Biochim Biophys Acta 1089:54–60.

    Google Scholar 

  23. Gritzmacher CA, Mehl VS, Liu F-T (1992)Biochemistry 31:9533–8.

    Google Scholar 

  24. Hirabayashi J, Kasai K (1993) InLectins and Glycobiology (Gabius H-J, Gabius S eds) pp. 482–91. Berlin: Springer-Verlag.

    Google Scholar 

  25. Hirabayashi J, Ayaki H, Soma G, Kasai K (1989)FEBS Lett 250:161–5.

    Google Scholar 

  26. Hirabayashi J, Sakakura Y, Kasai K (1993) InLectins and Glycobiology (Gabius, H-J, Gabius S eds) pp. 474–81. Berlin: Springer-Verlag.

    Google Scholar 

  27. Harrison FL, Wilson TJG (1992)J Cell Sci 101:635–46.

    Google Scholar 

  28. Hirabayashi J, Kasai K (1992)J Chromatogr 597:181–7.

    Google Scholar 

  29. Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM (1993)J Biol Chem 268:27034–8.

    Google Scholar 

  30. Hirabayashi J (1993)Trends Glycosci Glycotechnol 5:251–70.

    Google Scholar 

  31. Hirabayashi J (1994) InLectins, Biology, Biochemistry, Clinical Biochemistry, Vol. 10 (Bøog-Hansen TC ed.) Sigma (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirabayashi, J., Kasai, KI. Further evidence by site-directed mutagenesis that conserved hydrophilic residues form a carbohydrate-binding site of human galectin-1. Glycoconjugate J 11, 437–442 (1994). https://doi.org/10.1007/BF00731280

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731280

Keywords

Navigation