Glycoconjugate Journal

, Volume 11, Issue 5, pp 418–423 | Cite as

Characterization of the specificity of binding ofMoluccella laevis lectin to glycosphingolipids

  • Susann Teneberg
  • Iréne Leonardsson
  • Jonas Ångström
  • Sarah Ehrlich-Rogozinski
  • Nathan Sharon
Lectin Papers

Abstract

The specificity ofMoluccella laevis lectin was investigated by analysing its binding to glycosphingolipids separated on thin-layer chromatograms or adsorbed on microtitre wells. The binding activity of the lectin was highest for glycosphingolipids with terminal α-linkedN-acetylgalactosamine, both in linear structures, as the Forssman glycosphingolipid, GalNAcα3GalNAcβ3Galα4Galβ4Glcβ1Cer, and in branched structures, as glycosphingolipids with the blood group A determinant, GalNAcα3(Fucα2)Galβ. In addition, the lectin bound, though considerably more weakly, to linear glycosphingolipids with terminal α-linked galactose. When considering the use of theM. laevis lectin for biochemical and medical purposes this cross-reactivity may be of importance.

Keywords

Moluccella laevis lectin glycosphingolipid N-acetylgalactosamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lis H, Latter H, Adar R, Sharon N (1988)FEBS Lett 233:191–95.Google Scholar
  2. 2.
    Duk M, Mitra D, Lisowska E, Kabat EA, Sharon N, Lis H (1992)Carbohydrate Res 236:245–58.Google Scholar
  3. 3.
    Alperin DM, Latter H, Lis H, Sharon N (1992)Biochem J 285:1–4.Google Scholar
  4. 4.
    Lis H, Sharon N (1994)Trends Glycosci Glycotechnol 6:65–74.Google Scholar
  5. 5.
    Karlsson K-A (1987)Methods Enzymol 138:212–20.Google Scholar
  6. 6.
    Handa S (1963)Jpn J Exp Med 33:347–60.Google Scholar
  7. 7.
    Samuelsson BE, Pimlott W, Karlsson K-A (1990)Methods Enzymol 193:623–46.Google Scholar
  8. 8.
    Falk K-E, Karlsson K-A, Samuelsson BE (1979)Arch Biochem Biophys 192:164–76.Google Scholar
  9. 9.
    Falk K-E, Karlsson K-A, Samuelsson BE (1979)Arch Biochem. Biophys 192:177–90.Google Scholar
  10. 10.
    Falk K-E, Karlsson K-A, Samuelsson BE (1979)Arch Biochem Biophys 192:191–202.Google Scholar
  11. 11.
    Koerner Jr TAW, Prestegard JH, Demou PC, Yu RK (1983)Biochemistry 22:2676–87.Google Scholar
  12. 12.
    Yang H, Hakomori S-i (1971)J Biol Chem 246:1192–200.Google Scholar
  13. 13.
    Stellner K, Saito H, Hakomori S-i (1973)Arch Biochem Biophys 155:464–72.Google Scholar
  14. 14.
    Folch-Pi J, Lees M, Sloane Stanley GH (1957)J Biol Chem 226:497–509.Google Scholar
  15. 15.
    Aggarwal BB, Essalu TE, Hass PE (1985)Nature 318:665–67.Google Scholar
  16. 16.
    Magnani JL, Brockhaus M, Smith DF, Ginsburg V, Blaszczyk M, Mitchell KF, Steplewski Z, Koprowski H (1981)Science 212:55–6.Google Scholar
  17. 17.
    Waldi D (1962) inDünnschicht-Chromatographie (Stahl E, ed.) pp. 496–515. Berlin: Springer-Verlag.Google Scholar
  18. 18.
    Karlsson K-A, Strömberg N (1987)Methods Enzymol 138:220–32.Google Scholar
  19. 19.
    Mayo SM, Olafson BD, Goddard III WA (1990)J Phys Chem 94:8897–909.Google Scholar
  20. 20.
    Rappé AK, Goddard III WA (1991)J Phys Chem 95:3358–63.Google Scholar
  21. 21.
    Yiu SCK, Lingwood CA (1992)Anal Biochem 202:188–92.Google Scholar
  22. 22.
    Stults CLM, Sweeley CC, Macher BA (1989)Methods Enzymol 179:167–214.Google Scholar
  23. 23.
    Dennis RD, Geyer R, Egge H, Peter-Katalinic J, Li S-C, Stirm S, Wiegandt H (1985)J Biol Chem 260:5370–75.Google Scholar
  24. 24.
    Sugita M, Iwasaki Y, Hori T (1982)J Biochem (Tokyo)92:881–87.Google Scholar
  25. 25.
    Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao VS (1980)Can J Chem 58:631–53.Google Scholar
  26. 26.
    Bush CA, Yan ZY, Rao BNN (1986)J Am Chem Soc 108:6168–73.Google Scholar
  27. 27.
    Nyholm P-G, Samuelsson BE, Breimer ME, Pascher I (1989)J Mol Recog 2:103–13.Google Scholar
  28. 28.
    Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1982)J Biol Chem 257:557–68.Google Scholar
  29. 29.
    Hansson GC, Karlsson K-A, Larson G, McKibbin JM, Strömberg N, Thurin J (1983)Biochem Biophys Acta 750:214–16.Google Scholar
  30. 30.
    Hakomori S-i (1983) InSphingolipid Biochemistry (Kanfer JN, Hakomori S-i, eds) Vol. 3, pp. 1–165. New York: Plenum Press.Google Scholar
  31. 31.
    Falk P, Holgersson J, Jovall P-Å, Karlsson K-A, Strömberg N, Thurin J, Brodin T, Sjögren H-O (1986)Biochim Biophys Acta 878:296–99.Google Scholar
  32. 32.
    Naiki M, Fong J, Ledeen R, Marcus DM (1975)Biochemistry 14:4831–36.Google Scholar
  33. 33.
    Eto T, Ichikawa Y, Nishimura K, Ando S, Yamakawa T (1968)J Biochem (Tokyo)64:205–13.Google Scholar
  34. 34.
    Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1982)J Biol Chem 257:906–12.Google Scholar
  35. 35.
    Laine RA, Stellner K, Hakomori S-i (1974)Meth Membr Biol 2:205–44.Google Scholar
  36. 36.
    McKibbin JM, Spencer WA, Smith EL, Månsson J-E, Karlsson K-A, Samuelsson BE, Li Y-T, Li S-C (1982)J Biol Chem 257:755–60.Google Scholar
  37. 37.
    Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1980)FEBS Lett 114:51–6.Google Scholar
  38. 38.
    Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1980) InCell Surface Glycolipids (Sweeley CC, ed.) pp. 79–104. Washington DC: American Chemical Society.Google Scholar
  39. 39.
    Egge H, Kordowicz M, Peter-Katalinic J, Hanfland P (1985)J Biol Chem 260:4927–35.Google Scholar
  40. 40.
    Hanfland P, Egge H, Dabrowski U, Kuhn S, Roelcke D, Dabrowski J (1981)Biochemistry 20:5310–19.Google Scholar
  41. 41.
    Malone MJ, Stoffyn P (1966)J Neurochem 13:1037–45.Google Scholar
  42. 42.
    Yamakawa T (1966)Colloq Ges Physiol Chem 16:87–111.Google Scholar
  43. 43.
    Seyama Y, Yamakawa T (1974)J Biochem. (Tokyo)75:837–42.Google Scholar
  44. 44.
    Svennerholm L (1963)J Neurochem 10:613–23.Google Scholar
  45. 45.
    Thurin J, Brodin T, Bechtel B, Jovall P-Å, Karlsson H, Strömberg N, Teneberg S, Sjögren H-O, Karlsson K-A (1989)Biochim Biophys Acta 1002:267–72.Google Scholar
  46. 46.
    Hansson GC, Karlsson K-A, Leffler H; Strömberg N (1982)FEBS Lett 139:291–94.Google Scholar
  47. 47.
    Karlsson K-A, Larson G (1979)J Biol Chem 254:9311–16.Google Scholar
  48. 48.
    Svennerholm L (1962)Biochem Biophys Res Commun 9:436–41.Google Scholar
  49. 49.
    Ledeen R, Salzman K (1965)Biochemistry 4:2225–33.Google Scholar
  50. 50.
    Ando S, Kon K, Nagai Y, Yamakawa T (1982)Adv Exp Med Biol 152:71–81.Google Scholar
  51. 51.
    Ledeen R, Yu RK (1978)Res Methods Neurochem 4:371–410.Google Scholar
  52. 52.
    Koschielak J, Piasek A, Gorniak H, Gardas A, Gregor A (1973)Eur J Biochem 37:214–25.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Susann Teneberg
    • 1
  • Iréne Leonardsson
    • 1
  • Jonas Ångström
    • 1
  • Sarah Ehrlich-Rogozinski
    • 2
  • Nathan Sharon
    • 2
  1. 1.Department of Medical Biochemistry and MicrobiologyGöteborg UniversityGöteborgSweden
  2. 2.Department of Membrane Research and BiophysicsThe Weizmann InstituteRehovotIsrael

Personalised recommendations