Glycoconjugate Journal

, Volume 12, Issue 5, pp 651–659 | Cite as

The structure of the keratan sulphate chains attached to fibromodulin isolated from bovine tracheal cartilage: oligosaccharides generated by keratanase II digestion

  • Robert M. Lauder
  • Thomas N. Huckerby
  • Ian A. Nieduszynski
Glycoconjugate Papers

Abstract

The repeat region and chain caps of the N-linked keratan sulphates attached to bovine tracheal cartilage fibromodulin were fragmented by digestion with keratanase II, and the oligosaccharides generated were isolated by strong anion-exchange chromatography. Each of these oligosaccharides has been examined by both HPAE chromatography and high field1H-NMR spectroscopy.

All of the capping oligosaccharides isolated terminated with α(2-3)-linkedN-acetyl-neuraminic acid, and neither α(2-6)-linkedN-acetyl-neuraminic acid chain terminators, nor fucose α(1-3)-linked toN-acetylglucosamine were found. The keratan sulphate chains were short, with average lengths of five to seven disaccharides, and the level of galactose sulphation varied along the length of the chain.

The repeat region and chain cap were confirmed as having the following general structure:
$$NeuAc\alpha ^2 - ^3 \mathop {Gal{\ss}^1 }\limits^{\mathop {(6S)}\limits_/ } - ^4 \mathop {(GlcNAc{\ss}^1 }\limits^{\mathop {6S}\limits_/ } - ^3 \mathop {Gal{\ss}^1 }\limits^{\mathop {(6S)}\limits_/ } - ^4 )_{4 - 6} \mathop {GlcNAc}\limits^{\mathop {6S}\limits_/ } $$

This study has identified a novel structure in fibromodulin, namely a cap containing a sulphated galactose adjacent to a non-reducing terminalN-acetyl-neuraminic acid. We have also confirmed that the general structure of the repeat units and chain caps of N-linked keratan sulphate attached to fibromodulin isolated from bovine tracheal cartilage, is similar to that of O-linked keratan sulphate chains attached to aggrecan from non-articular cartilage. However, there are important differences in chain lengths and sulphation patterns.

Keywords

fibromodulin small proteoglycan keratan sulphate glycosaminoglycan sulphation keratanase II 

Abbreviations

KS

keratan sulphate

ELISA

enzyme linked immunosorbent assay

Gal

β-d-galactose

GlcNAc

N-acetylglucosamine (2-acetamido-β-d-glucose)

GlcNAc-ol

N-acetylglucosaminitol

NeuAc

N-acetyl-neuraminic acid

6S/(6S)

O-ester sulphate group on C6 present/sometimes present

NMR

nuclear magnetic resonance

HPAE

high pH anion-exchange

PED

pulsed electrochemical detection

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinegård D, Larsson T, Sommarin Y, Franzen A, Paulsson M, Hedbom E (1986)J Biol Chem 261: 13866–72.Google Scholar
  2. 2.
    Oldberg Å, Antonsson P, Lindblom K, Heinegård D (1989)EMBO J 8: 2601–4.Google Scholar
  3. 3.
    Plaas AHK, Neame PJ, Nivens CM, Reiss L (1990)J Biol Chem 265: 20634–40.Google Scholar
  4. 4.
    Antonsson P, Heinegård D, Oldberg Å (1991)J Biol Chem 266: 16859–61.Google Scholar
  5. 5.
    Vogel KG, Paulsson M, Heinegård D (1984)Biochem J 223: 587–97.Google Scholar
  6. 6.
    Hedbom E, Heinegård D (1989)J Biol Chem 264: 6898–905.Google Scholar
  7. 7.
    Novori K, Plaas AHK, Takagi T, Jasin HE (1990)Arthritis Rheum 35: S74.Google Scholar
  8. 8.
    Hedlund H, Mengarelli-Widholm S, Heinegård D, Reinholt FP, Svensson O (1994)Matrix Biol 14: 227–32.Google Scholar
  9. 9.
    Lauder RM, Huckerby TN, Nieduszynski IA (1994)Biochem J 302: 417–23.Google Scholar
  10. 10.
    Oeben M, Keller R, Stuhlsatz HW, Greiling H (1987)Biochem J 248: 85–93.Google Scholar
  11. 11.
    Nilsson B, Nakazawa K, Hassell JR, Newsome DA, Hascall VC (1983)J Biol Chem 258: 6056–63.Google Scholar
  12. 12.
    Nakazawa K, Ito M, Yamagata T, Suzuki S (1989) InKeratan Sulphate: Chemistry, Biology and Chemical Pathology, (Greiling H, Scott JE, eds) pp. 99–110, London: The Biochemical Society.Google Scholar
  13. 13.
    Brown GM, Huckerby TN, Nieduszynski IA (1995)Glycobiology 5: 311–17.Google Scholar
  14. 14.
    Plaas AHK, Ison AL, Ackland J (1989)J Biol Chem 264, 14447–54.Google Scholar
  15. 15.
    Farndale RW, Sayers CA, Barrett AJ (1982)Conn Tiss Res 9: 247–248.Google Scholar
  16. 16.
    Dickenson JM, Huckerby TN, Nieduszynski IA (1991)Biochem J 278: 779–85.Google Scholar
  17. 17.
    Nieduszynski IA, Huckerby TN, Dickenson JM, Brown GM, Tai GH, Morris HG, Eady S (1990)Biochem J 271: 243–45.Google Scholar
  18. 18.
    Brown GM, Huckerby TN, Nieduszynski IA (1994)Eur J Biochem 224: 281–308.Google Scholar
  19. 19.
    Pfeiffer G, Strim S, Geyer R, Strube KH, Bergwerff AA, Kamerling JP, Vliegenthart JFG (1992)Glycobiology 2: 411–18.Google Scholar
  20. 20.
    Brown GM (1992) PhD Thesis, University of Lancaster.Google Scholar
  21. 21.
    Brown GM, Huckerby TN, Morris HG, Abram BL, Nieduszynski IA (1994)Biochemistry 33: 4836–46.Google Scholar
  22. 22.
    Brown GM, Huckerby TN, Morris HG, Nieduszynski IA (1992)Biochem J 286: 235–41.Google Scholar
  23. 23.
    Stuhlstatz HW, Keller R, Becker G, Oeben M, Lennartz L, Fisher DC, Greiling H (1989) InKeratan Sulphate: Chemistry, Biology and Chemical Pathology (Greiling H, Scott JE, eds) pp. 1–11. London: The Biochemical Society.Google Scholar
  24. 24.
    Tai GH, Brown GM, Morris HG, Huckerby TN, Nieduszynski IA (1991)Biochem J 273: 307–10.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Robert M. Lauder
    • 1
  • Thomas N. Huckerby
    • 2
  • Ian A. Nieduszynski
    • 1
  1. 1.Division of Biological Sciences, Institute of Environmental and Biological SciencesUniversity of LancasterBailriggUK
  2. 2.The Polymer Centre, School of Physics and ChemistryLancaster UniversityBailriggUK

Personalised recommendations