Skip to main content
Log in

Cloning and sequence homology of a rat UDP-GalNAc:polypeptideN-acetylgalactosaminyltransferase

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A UDP-GalNAc:polypeptideN-acetylgalactosaminyltransferase (polypeptide GalNAc transferase) cDNA was amplified from rat sublingual, submandibular and parotid glands, brain, skeletal muscle, and liver, using the polymerase chain reaction (PCR) and sequences derived from bovine polypeptide GalNAc transferase-Type 1 (polypeptide GalNAc transferase-T1). The transcripts encoding the rat sublingual gland and bovine enzymes were 91% identical in nucleotide sequence, except in their 5′ and 3′ untranslated regions. The enzymes encoded by the rat and bovine cDNAs were 559 amino acids in length and were virtually identical (98% amino acid sequence identity and 99.5% homologous overall). Northern blot analysis indicates that the polypeptide GalNAc transferase-T1 transcripts are expressed in many tissues but at widely differing levels. Although the amino acid sequence of polypeptide GalNAc transferase-T1 is conserved among mammals, the pattern of tissue expression varies between rats and humans. For example, the steady-state level of polypeptide GalNAc transferase-T1 transcript is quite low in lung relative to other rat tissues, whereas high expression of this transcript is detected in human lung. Therefore, we surmise that isoforms of polypeptide GalNAc transferase must exist and that isoforms are expressed in a tissue-dependent fashion. Searches of the GenBank database have revealed homologous sequences for several isoforms derived from several human tissues. In addition, hypothetical proteins fromC. elegans also display strong homology; evidence suggests six ancestral isoforms of polypeptide GalNAc transferases may exist inC. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagen FK, VanWuyckhuyse BC, Tabak LA (1993)J Biol Chem 268: 18960–65.

    Google Scholar 

  2. Roth J, Wang Y, Eckhardt AE, Hill RL (1994)Proc Natl Acad Sci USA 91: 8935–39.

    Google Scholar 

  3. O'Connell B, Takak LA, Ramasubbu N (1991)Biochem Biophys Res Commun 180: 1024–30.

    Google Scholar 

  4. Wilson IBH, Gavel Y, von Heijne G (1991)Biochem J 275: 529–34.

    Google Scholar 

  5. Gooley AA, Williams KL (1994)Glycobiology 4: 413–17.

    Google Scholar 

  6. Elhammer AP, Poorman RA, Brown E, Maggiora LL, Hoogerheide JG, Kezdy FJ (1993)J Biol Chem 268: 10029–38.

    Google Scholar 

  7. Wang Y, Argwal N, Eckhardt AE, Stevens RD, Hill RL (1993)J Biol Chem 268: 22979–83.

    Google Scholar 

  8. Wragg S, Hagen FK, Tabak LA (1995)J Biol Chem 270: 16947–54.

    Google Scholar 

  9. Homa FL, Hollander T, Lehman DJ, Thomsen DR, Elhammer AP (1993)J Biol Chem 268: 12609–16.

    Google Scholar 

  10. Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, Thierry-Wieg J, Qiu L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Hawkins T, Ainscough R, Waterston R (1992)Nature 356: 37–41.

    Google Scholar 

  11. Kozak M (1984)Nucl Acids Res 12: 857–72.

    Google Scholar 

  12. Altschul SF, Warren G, Miller W, Myers EW, Lipman DJ (1990)J Mol Biol 215: 403–10.

    Google Scholar 

  13. Porchet N, van Cong N, Dufosse J, Audie JP, Guyonnet-Duperat V, Gross MS, Denis C, Degand P, Bernheim A, Aubert JP (1991)Biochem Biophys Res Commun 175: 414–22.

    Google Scholar 

  14. Meerzaman D, Charles P, Daskal E, Polymeropoulos MH, Martin BM, Rose MC (1994)J Biol Chem 269: 12932–39.

    Google Scholar 

  15. Shankar V, Gilmore MS, Elkins RC, Sachdev GP (1994)Biochem J 300: 295–98.

    Google Scholar 

  16. Ohmori H, Dohrman AF, Gallup M, Tsuda T, Kai H, Gum Jr JR, Kim YS, Basbaum CB (1994)J Biol Chem 269: 17833–40.

    Google Scholar 

  17. Tsuda T, Gallup M, Jany B, Gum J, Kim Y, Basbaum C (1993)Biochem Biophys Res Commun 195: 363–73.

    Google Scholar 

  18. Verma M, Davidson EA (1994)Glycoconj J 11: 172–79.

    Google Scholar 

  19. Gerard C, Eddy RL, Shows TB (1990)J Clin Invest 86: 1921–27.

    Google Scholar 

  20. Sorenson T, White T, Wandel HH, Clausen H (1994) In 3rd International Workshop on Carcinoma-Associated Mucins, Imperial Cancer Res, Fund ed., Cambridge, UK. p. 47.

  21. Kawaguchi N, Ohmori T, Takeshita Y, Kwanishi G, Katayaman S, Yamada H (1986)Biochem Biophys Res Commun 140: 350–56.

    Google Scholar 

  22. Hemmer RM, Donkin SG, Chin KJ, Grenache DG, Bhatt H, Politz SM (1991)J Cell Biol 115: 1237–47.

    Google Scholar 

  23. Probst JC, Gertzen EM, Hoffman W (1990)Biochemistry 29: 6240–44.

    Google Scholar 

  24. Gems D, Maizel R (1993)Worm Breeder's Gazette 13: 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagen, F.K., Gregoire, C.A. & Tabak, L.A. Cloning and sequence homology of a rat UDP-GalNAc:polypeptideN-acetylgalactosaminyltransferase. Glycoconjugate J 12, 901–909 (1995). https://doi.org/10.1007/BF00731252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731252

Keywords

Navigation