Skip to main content
Log in

Purification, properties and possible gene assignment of an α1,3-fucosyltransferase expressed in human liver

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

α1,3-Fucosyltransferase solubilized from human liver has been purified 40 000-fold to apparent homogeneity by a multistage process involving cation exchange chromatography on CM-Sephadex, hydrophobic interaction chromatography on Phenyl Sepharose, affinity chromatography on GDP-hexanolamine Sepharose and HPLC gel exclusion chromatography. The final step gave a major protein peak that co-chromatographed with α1,3-fucosyltransferase activity and had a specific activity of ∼ 5–6 µmol min−1 mg−1 and anM r ∼ 44 000 deduced from SDS-PAGE and HPLC analysis. The purified enzyme readily utilized Galβ1-4GlcNAc, NeuAcα2-3Galβ1-4GlcNAc and Fucα1-2Galβ1-4GlcNAc, with a preference for sialylated and fucosylated Type 2 acceptors. Fucα1-2Galβ1-4Glc and the Type 1 compound Galβ1-3GlcNAc were very poor acceptors and no incorporation was observed with NeuAcα2-6Galβ1-4GlcNAc. A polyclonal antibody raised against the liver preparation reacted with the homologous enzyme and also with the blood group Lewis gene-associated α1,3/1,4-fucosyltransferase purified from the human A431 epidermoid carcinoma cell line. No cross reactivity was found with α1,3-fucosyltransferase(s) isolated from myeloid cells. Examination by Northern blot analysis of mRNA from normal liver and from the HepG2 cell line, together with a comparison of the specificity pattern of the purified enzyme with that reported for the enzyme expressed in mammalian cells transfected with theFuc-TVI cDNA, suggests a provisional identification ofFuc-TVI as the major α1,3-fucosyltransferase gene expressed in human liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philips ML, Nudelman E, Gaeta FCA, Perez M, Singhad AK, Hakomori S-I, Paulsen JC (1990)Science 250: 1130–32.

    Google Scholar 

  2. Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991)J Biol Chem 266: 14869–72.

    Google Scholar 

  3. Iwai K, Ishikawa H, Kaji M, Suquira H, Ishizu A, Takahashi C, Kato H, Tanabe T, Yoshiki T (1993)Int J Cancer 54: 972–77.

    Google Scholar 

  4. Sawada R, Tsuboi S, Fukada M (1994)J Biol Chem 269: 1425–31.

    Google Scholar 

  5. Eggens I, Fenderson BA, Yokokuni T, Dean B, Stroud MR, Hakomori S (1989)J Biol Chem 264: 9476–84.

    Google Scholar 

  6. Kojima N, Fenderson BA, Stroud MR, Habermann R, Toyokun T, Hakomori S (1994)Glycoconjugate J 11: 238–48.

    Google Scholar 

  7. de Vries TH, van den Eijnden DH, Schultz JE, O'Neill R (1992)Histochem J 24: 761–70.

    Google Scholar 

  8. Watkins WM, Skacel PO, Johnson PH (1993) InCarbohydrate Antigens ACS Symposium Series 519 (Garegg PJ, Lindberg AA, eds) pp. 34–63. Washington, DC: American Chemical Society.

    Google Scholar 

  9. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990)Genes Dev 4: 1288–1303.

    Google Scholar 

  10. Goeltz SE, Hession C, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R (1991)Cell 63: 1349–56.

    Google Scholar 

  11. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK (1991)J Biol Chem 266: 17467–77.

    Google Scholar 

  12. Kumar R, Potvin B, Muller WA, Stanley P (1991)J Biol Chem 266: 21777–82.

    Google Scholar 

  13. Weston BW, Nair RP, Larsen RD, Lowe JB (1992)J Biol Chem 267: 4152–60.

    Google Scholar 

  14. Weston BW, Smith PL, Kelly RJ, Lowe JB (1992)J Biol Chem 267: 24575–84.

    Google Scholar 

  15. Koszdin KL, Bowen BR (1992)Biochem Biophys Res Commun 187: 152–57.

    Google Scholar 

  16. Sasaki K, Kurato K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T (1994)J Biol Chem 269: 14730–37.

    Google Scholar 

  17. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB (1994)J Biol Chem 269: 16789–94.

    Google Scholar 

  18. Johnson PH, Watkins WM (1989) InProc. 10th Int Symp Glycoconjugates, Jerusalem 1989 (Sharon N, Lis H, Duksin D, Kahane I, eds) pp. 214–15.

  19. Nunez HA, O'Connor JV, Rosevear PR, Barker R (1981)Can J Chem 29: 2086–95.

    Google Scholar 

  20. Donald ASR, Feeney J (1988)Carbohydr Res 178: 79–91.

    Google Scholar 

  21. Pärkkïnen J, Finne J (1983)Eur J Biochem 140: 427–31.

    Google Scholar 

  22. Alais J, Veyrières A (1981)Carbohydr Res 93: 164–65.

    Google Scholar 

  23. Flowers HM (1972)Methods Carbohydr Chem 6: 474–80.

    Google Scholar 

  24. Morgan WTJ (1967)Methods Immunol Immunochem 1: 75–81.

    Google Scholar 

  25. Tamm I, Horsfall FL (1950)Proc Soc Exp Biol Med 74: 108–14.

    Google Scholar 

  26. Stealey JR, Watkins WM (1971)Biochem J 126: 16–17P.

    Google Scholar 

  27. Beyer TA, Sadler JE, Hill RL (1980)J Biol Chem 245: 3059–65.

    Google Scholar 

  28. Cuatrescasas P (1970)J Biol Chem 255: 5364–72.

    Google Scholar 

  29. Johnson PH, Watkins WM (1985)Biochem Soc Trans 13: 1119–20.

    Google Scholar 

  30. Johnson PH, Watkins WM (1987)Proc. 9th Int Symp Glycoconjugates, Lille, 1987 (Montreuil J, Verbert A, Spik G, Fournet B, eds) Abstract E107.

  31. Johnson PH, Watkins WM (1992)Glycoconjugate J 9: 241–49.

    Google Scholar 

  32. Johnson PH, Donald ASRD, Watkins WM (1992)Glycoconjugate J 9: 251–64.

    Google Scholar 

  33. Johnson PH, Donald ASRD, Watkins WM (1993)Glycoconjugate J 10: 152–64.

    Google Scholar 

  34. Johnson PH, Watkins WM (1982)Biochem Soc Trans 10: 445–46.

    Google Scholar 

  35. Johnson PH (1988) PhD Thesis, Council for National Academic Awards, UK.

    Google Scholar 

  36. Johnson PH, Watkins WM (1987)Biochem Soc Trans 15: 396.

    Google Scholar 

  37. Read SM, Northcote DH (1981)Anal Biochem 116: 53–64.

    Google Scholar 

  38. Laemmli UK (1970)Nature 227: 680.

    Google Scholar 

  39. Dubray G, Bezard G (1982)Anal Biochem 119: 325–29.

    Google Scholar 

  40. Pacuszka T, Koscielak J (1974)FEBS Lett 41: 348–51.

    Google Scholar 

  41. Wilkinson M (1991) InEssential Molecular Biology (Brown TA, ed.) Vol. I, pp. 69–87. Oxford: IRL Press.

    Google Scholar 

  42. Maniatis T, Fritsch EF, Sambrook J (1982) InMolecular Cloning p. 197. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  43. Dyson NJ (1991) InEssential Molecular Biology (Brown TA, ed.) Vol. II, pp. 111–56. Oxford: IRL Press.

    Google Scholar 

  44. Mollicone R, Gibaud A, Francois A, Ratcliffe M, Oriol R (1990)Eur J Biochem 191: 169–76.

    Google Scholar 

  45. Cartron JP, Mulet C, Bauvois B, Rahuel C, Salmon C (1980)Blood Transfus Immunohaematol 23: 271–82.

    Google Scholar 

  46. Spik G, Bayard B, Fournet B, Strecker G, Bouquelet S, Montreuil J (1975)FEBS Lett 50: 296–99.

    Google Scholar 

  47. Williams J, Marshall RD, van Halbeek H, Vliegenthart JFG (1984)Carbohydr Res 134: 141–55.

    Google Scholar 

  48. Nilson B, Norden NE, Svensson S (1979)J Biol Chem 254: 4545–53.

    Google Scholar 

  49. Longmore GD, Schachter H (1982)Carbohydr Res 100: 365–92.

    Google Scholar 

  50. Prieels JP, Monnom D, Dolmans M, Beyer TA (1981)J Biol Chem 256: 10456–63.

    Google Scholar 

  51. Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981)Adv Enzymol 52: 23–175.

    Google Scholar 

  52. Jezequel-Cuer M, N'Guyen-Cong H, Biou D, Durand G (1993)Biochim Biophys Acta 1157: 252–58.

    Google Scholar 

  53. Postigo AA, Marazueta M, Sanchez-Madrid F, de Landazuri MO (1994)J Clin Invest 94: 1585–96.

    Google Scholar 

  54. Greenwell P, Johnson PH, Edwards JH, Reed RM, Moores PP, Bird A, Graham HA, Watkins WM (1986)Blood Transfusion Immunohaematol 29: 233–49.

    Google Scholar 

  55. Caillard T, Le Pendu J, Ventura M, Mada M, Rault G, Mannoni P, Oriol R (1988)Exp Clin Immunol 5: 15–23.

    Google Scholar 

  56. Mollicone R, Reguine I, Fletcher A, Aziz A, Rustam M, Weston BW, Kelly RJ, Lowe JB, Oriol R (1994)J Biol Chem 269: 12662–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

†Died June, 1991

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P.H., Donald, A.S.R., Clarke, J.L. et al. Purification, properties and possible gene assignment of an α1,3-fucosyltransferase expressed in human liver. Glycoconjugate J 12, 879–893 (1995). https://doi.org/10.1007/BF00731250

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731250

Keywords

Navigation