Glycoconjugate Journal

, Volume 11, Issue 3, pp 194–203 | Cite as

Purification, characterization and reconstitution of CMP-N-acetylneuraminate hydroxylase from mouse liver

  • Petra Schneckenburger
  • Lee Shaw
  • Roland Schauer


CMP-N-acetylneuraminate hydroxylase was isolated from mouse liver high speed supernatant with a yield of 0.4% and an apparent 1000-fold purification. The enzyme is a monomeric protein with a molecular weight of 66 kDa, as determined by gel filtration and SDS-PAGE. The hydroxylase system was reconstituted with Triton X-100-solubilized mouse liver microsomes and purified soluble or microsomal forms of cytochrome b5 reductase and cytochrome b5. The systems were characterized in detail and kinetic parameters for each system were determined.


sialic acid N-glycoloylneuraminic acid hydroxylase protein purification cytochrome b5 electron transfer enzyme system reconstitution 



N-acetyl-β-d-neuraminic acid


N-glycoloyl-β-d-neuraminic acid


cytidine-5′-monophospho-N-acetylneuraminic acid


cytidine-5′-monophospho-N-glycoloylneuraminic acid


trichloroacetic acid




superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reuter G, Schauer R (1994)Methods Enzymol 230:168–99.Google Scholar
  2. 2.
    Schauer R (1985)Trends Biochem Sci 10:357–60.Google Scholar
  3. 3.
    Varki A (1992)Glycobiology 2:25–40.Google Scholar
  4. 4.
    Corfield AP, Schauer R (1982)Cell Biol Monogr 10:5–55.Google Scholar
  5. 5.
    Higashi H, Ikuta K, Ueda S, Kato S, Hirabayashi Y, Matsumoto M, Naiki M (1984)J Biochem 59:785–94.Google Scholar
  6. 6.
    Higashi H, Hirabayashi Y, Fukui Y, Naiki M, Matsumoto M, Ueda S, Kato S (1985)Cancer Res 45:3796–802.Google Scholar
  7. 7.
    Shaw L, Schauer R (1988)Biol Chem Hoppe-Seyler 369:477–86.Google Scholar
  8. 8.
    Shaw L, Schauer R (1989)Biochem J 263:355–63.Google Scholar
  9. 9.
    Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R (1990)Eur J Biochem 193:715–23.Google Scholar
  10. 10.
    Shaw L, Yousefi S, Dennis JW, Schauer R (1991)Glycoconjugate J 8:434–41.Google Scholar
  11. 11.
    Bouhours J-F, Bouhours D (1989)J Biol Chem 264:16992–4.Google Scholar
  12. 12.
    Muchmore EA (1992)Glycobiology 2:337–43.Google Scholar
  13. 13.
    Kawano T, Kozutsumi Y, Takematsu H, Kawasaki T, Suzuki A (1993)Glycoconjugate J 10:109–15.Google Scholar
  14. 14.
    Kozutsumi Y, Kawano T, Yamakawa T, Suzuki A (1990)J Biochem 108:704–6.Google Scholar
  15. 15.
    Shaw L, Schneckenburger P, Carlsen J, Christiansen K, Schauer R (1992)Eur J Biochem 206:269–77.Google Scholar
  16. 16.
    Kozutsumi Y, Kawano T, Kawasaki H, Suzuki K, Yamakawa T, Suzuki A (1991)J Biochem 110:429–35.Google Scholar
  17. 17.
    Schlenzka W, Shaw L, Schauer R (1993)Biochim Biophys Acta 1161:131–8.Google Scholar
  18. 18.
    Schneckenburger P, Shaw L, Carlsen J, Christiansen K, Schauer R (1993)Glycoconjugate J 10:329.Google Scholar
  19. 19.
    Shaw L, Schneckenburger P, Schlenzka W, Carlsen J, Christiansen K, Jürgensen D, Schauer R (1994)Eur J Biochem 219:1001–11.Google Scholar
  20. 20.
    Schlenzka W, Shaw L, Schauer R (1993)Glycoconjugate J 10:329.Google Scholar
  21. 21.
    Arinç E (1991) InMolecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds, NATO ASI Series A: Life Sciences vol. 202 (Arinç E, Schenkman JB, Hodgson E, eds) pp. 149–70. New York and London: Plenum Press.Google Scholar
  22. 22.
    Spatz L, Strittmatter P (1973)J Biol Chem 248:793–9.Google Scholar
  23. 23.
    Tajima S, Enomoto K, Sato R (1987)J Biochem 84:1573–86.Google Scholar
  24. 24.
    Mitoma J, Ito A (1992)EMBO J 11:4197–203.Google Scholar
  25. 25.
    Passon PB, Reed DW, Hultquist DE (1972)Biochim Biophys Acta 275:62–73.Google Scholar
  26. 26.
    Kawano T, Kozutsumi Y, Kawasaki T, Suzuki A (1993)Glycoconjugate J 10:331.Google Scholar
  27. 27.
    Schneckenburger P, Shaw L, Schauer R (1993)Biol Chem Hoppe-Seyler 374:956.Google Scholar
  28. 28.
    Williams CH (1976) InThe Enzymes 3rd edition vol XIII, part C (Boyer PD, ed.) pp. 89–173. New York: Academic Press.Google Scholar
  29. 29.
    Masters BSS, Williams CH, Kamin H (1967)Methods Enzymol 10:565–73.Google Scholar
  30. 30.
    Margoliash E, Frohwirt N (1959)Biochem J 71:570–2.Google Scholar
  31. 31.
    Hames BD, Rickwood D (eds) (1981)Gel Electrophoresis of Proteins: A Practical Approach. London and Washington DC: IRL Press Ltd.Google Scholar
  32. 32.
    Heukeshoven J, Dernik R (1985)Electrophoresis 6:103–12.Google Scholar
  33. 33.
    Schlenzka W, Shaw L, Schauer R (1993)Biol Chem Hoppe-Seyler 374:955.Google Scholar
  34. 34.
    Lever M (1977)Anal Biochem 83:274–84.Google Scholar
  35. 35.
    Halliwell B, Gutteridge JMC (1984)Biochem J 219:1–14.Google Scholar
  36. 36.
    Archakov AI, Bachmanova GI (eds) (1990) InCytochrome P-450 and Active Oxygen pp. 4–14. Taylor & Francis, London.Google Scholar
  37. 37.
    Berman MC, Adnamis CM, Ivanetich KM, Kench JE (1976)Biochem J 157:237–46.Google Scholar
  38. 38.
    Muchmore EA, Milewski M, Varki A, Diaz S (1989)J Biol Chem 264:20216–23.Google Scholar
  39. 39.
    Takematsu H, Kawano T, Koyama S, Kozutsumi Y, Suzuki A, Kawasaki T (1994)J Biochem 115:381–6.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Petra Schneckenburger
    • 1
  • Lee Shaw
    • 1
  • Roland Schauer
    • 1
  1. 1.Biochemisches Institut der Christian-Albrechts-Universität zu KielKielFRG

Personalised recommendations