Skip to main content
Log in

Analysis of glycosylphosphatidylinositol membrane anchors by electrospray ionization-mass spectrometry and collision induced dissociation

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The multi-component nature of glycosylphosphatidylinositol membrane anchors makes the analysis of their structure complex. Nuclear magnetic resonance spectroscopy of delipidated glycosylphosphatidylinositol-peptide fractions can supply considerable information but requires relatively large quantities of material. High-sensitivity sequencing techniques are available for the oligosaccharide portions of glycosylphosphatidylinositol anchors, but there is no simple and generally applicable technique to complement this information. In this paper we describe the application of electrospray ionization-mass spectrometry and collision induced dissociation to study intact glycosylphosphatidylinositol-peptides from aTrypanosoma brucei variant surface glycoprotein. Collision of the [M + 4H]4+ pseudomolecular ions of two glycosylphosphatidylinositol-peptide glycoforms produced easily interpretable daughter ion spectra, from which detailed information on the lipid moiety, carbohydrate sequence and site of peptide attachment could be obtained. All of the collision induced dissociation cleavage events occurred in the glycosylphosphatidylinositol portion of the glycosylphosphatidylinositol-peptide. This technique supplies complementary data to the high-sensitivity oligosaccharide sequencing procedures and should greatly assist glycosylphosphatidylinositol anchor structure-function studies, particularly when sample quantities are limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low MG (1989)Biochim Biophys. Acta 988:427–54.

    Google Scholar 

  2. Cross GAM (1990)Annu Rev Cell Biol 6:1–39.

    Google Scholar 

  3. Englund PT (1993)Annu Rev Biochem 62:121–38.

    Google Scholar 

  4. Brown D (1993)Current Opinion in Immunol 5:349–54.

    Google Scholar 

  5. Anderson RGW, Kamen BA, Rothberg KG, Lacey SW (1992)Science 255:410–11.

    Google Scholar 

  6. McConville MJ, Ferguson MAJ (1993)Biochem J 294:305–24.

    Google Scholar 

  7. Homans SW, Ferguson MAJ, Dwek RA, Rademacher TW, Anand R, Williams AF (1988)Nature 333:269–72.

    Google Scholar 

  8. Roberts WL, Santikarn S, Reinhold VN, Rosenberry TL (1988)J Biol Chem 263:18776–84.

    Google Scholar 

  9. Walter EI, Roberts WL, Rosenberry TL, Ratnoff WD, Medof ME (1990)J Immunol 144:1030–6.

    Google Scholar 

  10. Deeg MA, Humphrey DR, Yang SH, Ferguson TR, Reinhold VN, Rosenberry TL (1992)J Biol Chem 267:11573–80.

    Google Scholar 

  11. Kamitani T, Menon AK, Hallaq Y, Warren CD, Yeh ETH (1992)J Biol Chem 267:24611–19.

    Google Scholar 

  12. Puoti A, Conzelman A (1992)J Biol Chem 267:22673–80.

    Google Scholar 

  13. Mehlert A, Varon L, Silman I, Homans SW, Ferguson MAJ (1993)Biochem J 296:473–9.

    Google Scholar 

  14. Haynes PA, Ferguson MAJ, Gooley AA, Redmond JW, Williams KL (1993)Eur J Biochem 216:729–37.

    Google Scholar 

  15. Stahl N, Baldwin MA, Hecker R, Pan K-M, Burlingame AL, Prusiner SB (1992)Biochemistry 31:5043–53.

    Google Scholar 

  16. Brewis IA, Ferguson MAJ, Turner AJ, Hooper NM (1993)Biochem Soc Trans 21:46S.

    Google Scholar 

  17. Güther MLS, Cardoso de Almeida ML, Yoshida N, Ferguson MAJ (1992)J Biol Chem 267:6820–8.

    Google Scholar 

  18. Fankhauser C, Homans SW, Thomas-Oates JE, McConville MJ, Desponds C, Conzelmann A, Ferguson MAJ (1993)J Biol Chem 268:26365–74.

    Google Scholar 

  19. Ferguson MAJ, Murray P, Rutherford H, McConville MJ (1993)Biochem J 291:51–5.

    Google Scholar 

  20. Ferguson MAJ, Homans SW, Dwek RA, Rademacher TW (1988)Science 239:753–9.

    Google Scholar 

  21. Roberts WL, Myher JJ, Kuksis A, Low MG, Rosenberry TL (1988)J Biol Chem 263:18766–75.

    Google Scholar 

  22. Ferguson MAJ (1992)Biochem J 284:297–300.

    Google Scholar 

  23. Turco SJ, Orlandi PA, Jr, Homans SW, Ferguson MAJ, Dwek RA, Rademacher TW (1989)J Biol Chem 264:6711–15.

    Google Scholar 

  24. Rosen G, Pahlsson P, Londner MV, Westerman ME, Nilsson B (1989)J Biol Chem 264:10457–10463 (correction in265:7708).

    Google Scholar 

  25. Schneider P, Ferguson MAJ, McConville MJ, Mehlert A, Homans SW, Bordier C (1990)J Biol Chem 265:16955–64.

    Google Scholar 

  26. Previato JO, Gorin PA, Mazurek M, Xavier MT, Fournet B, Wieruszesk JM, Mendonca-Previato L, Jones C, Wait R, Fournet B (1990)J Biol Chem 265:2518–26.

    Google Scholar 

  27. Lederkremer RM, Lima C, Ramirez MI, Ferguson MAJ, Homans SW, Thomas-Oates JE (1991)J Biol Chem 265:19611–623.

    Google Scholar 

  28. Previato JO, Mendonça-Previato L, Jones C, Wait R, Fournet B (1992)J Biol Chem 267:24279–86.

    Google Scholar 

  29. McConville MJ, Homans SW (1992)J Biol Chem 267:5855–61.

    Google Scholar 

  30. Jones C, Previato JO, Medonça-Previato L, Wait R (1994)Brazilian J Med Biol Res 27:219–26.

    Google Scholar 

  31. Ferguson MAJ (1992) InLipid Modifications of Proteins: A Practical Approach (Hooper NM, Turner AJ, eds) pp. 191–230. IRL Press, Oxford.

    Google Scholar 

  32. Güther MLS, Ferguson MAJ (1993) InGlycoprotein Analysis in Biomedicine, Methods in Molecular Biology Series (Hounsell EF, ed.) pp. 99–117, Humana Press, UK.

    Google Scholar 

  33. Couto AS, Lederkremer RM, Colli W, Alves MJM (1993)Eur J Biochem 217:597–602.

    Google Scholar 

  34. Schneider P, Ralton JE, McConville MJ, Ferguson MAJ (1993)Anal Biochem 210:106–12.

    Google Scholar 

  35. Schneider P, Rosal J-P, Ransijn A, Ferguson MAJ, McConville MJ (1993)Biochem J 295:555–64.

    Google Scholar 

  36. McConville MJ, Collidge T, Ferguson MAJ, Schneider P (1993)J Biol Chem 268:15595–604.

    Google Scholar 

  37. McConville MJ, Homans SW, Thomas-Oates JE, Dell A, Bacic A (1990)J Biol Chem 265:7385–94.

    Google Scholar 

  38. McConville MJ, Thomas-Oates JE, Ferguson MAJ, Homans SW (1990)J Biol Chem 265:19611–23.

    Google Scholar 

  39. Baldwin MA, Stahl N, Reinders LG, Gibson BW, Prusiner SB, Burlingame AL (1990)Anal Biochem 191:174–2.

    Google Scholar 

  40. Sevlever D, Påhlsson P, Rosen G, Nilsson B, Londner MV (1991)Glycoconj J 8:321–9.

    Google Scholar 

  41. Thomas JR, McConville MJ, Thomas-Oates JE, Homans SW, Ferguson MAJ, Greis K, Turco SJ (1991)J Biol Chem 267:6829–33.

    Google Scholar 

  42. Ilg T, Etges R, Overath P, McConville MJ, Thomas-Oates JE, Homans SW, Ferguson MAJ (1992)J Biol Chem 267:6834–40.

    Google Scholar 

  43. Wait R, Jones C, Previato JO, Medonca-Previato L (1994)Brazilian J Med Biol Res 27:203–10.

    Google Scholar 

  44. Reinhold BB, Reinhold VN (1992)Proc Jap Soc Biomed Mass Spec 17:117–29.

    Google Scholar 

  45. Taguchi R, Hamakawa N, Haradanishida M, Fukui T, Nojima K, Ikezawa H (1994)Biochemistry 33:1017–22.

    Google Scholar 

  46. Cross GAM (1984)J Cell Biochem 24:79–90.

    Google Scholar 

  47. Ferguson MAJ, Cross GAM (1984)J Biol Chem 259:3011–15.

    Google Scholar 

  48. Hereld D, Krakow JL, Hart GW, Englund PT (1988). InPost-translational Modification of Proteins by Lipids (Brodbeck U, Bordier C, eds) pp. 9–15. Springer-Verlag, Berlin.

    Google Scholar 

  49. Allen G, Gurnett LP, Cross GAM (1982)J. Mol Biol 157:527–46.

    Google Scholar 

  50. Bothroyd JC, Paynter CA, Coleman SC, Cross GAM (1982)J Mol Biol 157:547–56.

    Google Scholar 

  51. Allen G, Gurnett LP (1983)Biochem J 209:481–87.

    Google Scholar 

  52. Ferguson MAJ, Haldar K, Cross GAM (1985)J Biol Chem 260:4963–68.

    Google Scholar 

  53. Dell A, Thomas-Oates JE (1989) InAnalysis of Carbohydrates by GLC and MS (Bierman CJ, McGinnis GD, eds) CRC Press Inc., Florida.

    Google Scholar 

  54. Dell A (1990)Methods Enzymol 193:647–60.

    Google Scholar 

  55. Dell A, Khoo K-H, Panico M, McDowell RA, Etienne AT, Reason AJ, Morris HR (1993) InGlycobiology: A Practical Approach (Fukuda M, Kobata, eds) pp. 187–222. IRL Oxford University Press, Oxford.

    Google Scholar 

  56. Schmitz B, Klein RA, Egge H, Peter-Katalanic J (1986)Mol Biochem Parasitol 20:191–7.

    Google Scholar 

  57. Stahl N, Baldwin MA, Prusiner SB (1991)Cell Biol Int Rep 15:853–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redman, C.A., Green, B.N., Thomas-Oates, J.E. et al. Analysis of glycosylphosphatidylinositol membrane anchors by electrospray ionization-mass spectrometry and collision induced dissociation. Glycoconjugate J 11, 187–193 (1994). https://doi.org/10.1007/BF00731217

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731217

Keywords

Navigation