Skip to main content
Log in

The ganglioside GD1α, IV3Neu5Ac, III6Neu5Ac-GgOse4Cer, is a major disialoganglioside in the highly metastatic murine lymphoreticular tumour cell line MDAY-D2

  • Glycopinion Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the ganglioside expression of the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Cells were propagated under controlled pH conditions and oxygen supply in bioreactors of 1 and 7.5l volumes by repeated batch fermentation. Gangliosides were isolated from 2.7×1011 cells, purified by silica gel chromatography and separated into mono- and disialoganglioside fractions by preparative DEAE anion exchange high performance liquid chromatography. Individual gangliosides were obtained by preparative thin layer chromatography. Their structural features were established by immunostaining, fast atom bombardment and gas chromatography mass spectrometry. In addition to gangliosides of the GM1a-pathway (GM2, GM1a and GD1a) and GM1b (IV3Neu5Ac-GgOse4Cer) and GalNAc-GM1b of the GM1b-pathway, the dis8aloganglioside GD1α (IV3Neu5Ac, III6Neu5Ac-GgOse4Cer) was found in equal amounts compared to GD1a (IV3Neu5Ac, II3Neu5Ac-GgOse4Cer). All gangliosides were substituted with C24:0,24:1 and C16:0 fatty acids, sphingosine andN-acetylneuraminic acid as the sole sialic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S (1981)Ann Rev Biochem 50:733–64.

    Google Scholar 

  2. Hakomori S (1985)Cancer Res 45:2405–14.

    Google Scholar 

  3. Yogeeswaran G, Salk PL (1981)Science 212:1514–16.

    Google Scholar 

  4. Dyatlovitskaya EV, Bergelson LD (1987)Biochim Biophys Acta 907:125–43.

    Google Scholar 

  5. Dennis JW (1986)Cancer Res 46:4594–600.

    Google Scholar 

  6. Murayama K, Levery SB, Schirrmacher V, Hakomori S (1986)Cancer Res 46:1395–402.

    Google Scholar 

  7. Hanisch FG, Sölter J, Jansen V, Lochner A, Peter-Katalinié J, Uhlenbruck G (1990)Br J Cancer 61:813–20.

    Google Scholar 

  8. Laferté S, Fukuda MN, Fukuda M, Dell A, Dennis JW (1987)Cancer Res 47:150–9.

    Google Scholar 

  9. Müthing J, Peter-Katalinié J, Hanisch FG, Neumann U (1991)Glycoconjugate J 8:414–23.

    Google Scholar 

  10. Yohe HC, Macala LJ, Giordano G, McMurray WJ (1992)Biochim Biophys Acta 1109:210–17.

    Google Scholar 

  11. Bartoszewicz Z, Koŝcielak J, Pacuszka T (1986)Carbohydr Res 151:77–88.

    Google Scholar 

  12. Nakamura K, Suzuki M, Taya C, Inagaki F, Yamakawa T, Suzuki A (1991)J Biochem 110:832–41.

    Google Scholar 

  13. Rokukawa C, Nakamura K, Handa S (1988)J Biochem 103:36–42.

    Google Scholar 

  14. Iwamori M, Sunada S, Ishihara E, Moki M, Fujimoto S, Nagai Y (1986)FEBS Lett 198:66–70.

    Google Scholar 

  15. Taki T, Hirabayashi Y, Ishikawa H, Ando S, Kon K, Tanaka Y, Matsumoto M (1986)J Biol Chem 261:3075–78.

    Google Scholar 

  16. Taki T, Ogura M, Nakajima M, Handa S (1993)Glycoconjugate J 10:273.

    Google Scholar 

  17. Kerbel RS, Twiddy RR, Robertson DM (1978)Int J Cancer 22:583–94.

    Google Scholar 

  18. Kerbel RS, Florian M, Man MS, Dennis J, McKenzie IFC (1980)J Natl Cancer Inst 64:1221–30.

    Google Scholar 

  19. Lehmann J, Vorlop J, Büntemeyer H (1988) InAnimal Cell Biotechnology (Spier RS, Griffiths JB, eds.) Vol. 3, pp. 221–37. New York: Academic Press.

    Google Scholar 

  20. Müthing J, Egge H, Kniep B, Mühlradt PF (1987)Eur J Biochem 163:407–16.

    Google Scholar 

  21. Momoi T, Ando S, Nagai Y (1976)Biochim Biophys Acta 441:488–97.

    Google Scholar 

  22. Ueno K, Ando S, Yu RK (1978)J Lipid Res 19:863–71.

    Google Scholar 

  23. Svennerholm L (1957)Biochim Biophys Acta 24:604–11.

    Google Scholar 

  24. Skipski VP (1975)Methods Enzymol 35:396–425.

    Google Scholar 

  25. Levery SB, Nudelman ED, Salyan MEK, Hakomori S (1989)Biochemistry 28:7772–81.

    Google Scholar 

  26. Karamanos NK, Wikström B, Antonopoulos CA, Hjerpe A (1990)J Chromatogr 503:421–29.

    Google Scholar 

  27. Unland F, Müthing J (1992)Biomed Chromatogr 6:155–59.

    Google Scholar 

  28. Folch J, Lees M, Sloane Stanley GH (1957)J Biol Chem 226, 497–509.

    Google Scholar 

  29. Müthing J, Mühlradt PF (1988)Anal Biochem 173:10–17.

    Google Scholar 

  30. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.

    Google Scholar 

  31. Müthing J, Pörtner A, Jäger V (1992)Glycoconjugate J 9:265–73.

    Google Scholar 

  32. Wu G, Ledeen R (1988)Anal Biochem 173:368–75.

    Google Scholar 

  33. Young Jr. WW, MacDonald EMS, Nowinski RC, Hakomori S (1979)J Exp Med 150:1008–19.

    Google Scholar 

  34. Müthing J, Ziehr H (1990)Biomed Chromatogr 4:70–72.

    Google Scholar 

  35. Peter-Katalinić J, Egge H (1990)Methods Enzymol 193:713–33.

    Google Scholar 

  36. Ciucanu I, Kerek F (1984)Carbohydr Res 131:209–17.

    Google Scholar 

  37. Levery SB, Hakomori S (1987)Methods Enzymol 138E:13–25.

    Google Scholar 

  38. Hanisch FG, Peter-Katalinić J (1992)Eur J Biochem 205:527–35.

    Google Scholar 

  39. Williams MA, McCluer RH (1980)J Neurochem 35:266–69.

    Google Scholar 

  40. Nakamura K, Hashimoto Y, Suzuki M, Suzuki A, Yamakawa T (1984)J Biochem 96:949–57.

    Google Scholar 

  41. Nakamura K, Suzuki M, Inagaki F, Yamakawa T, Suzuki A (1987)J Biochem 101:825–35.

    Google Scholar 

  42. Müthing J, Schwinzer B, Peter-Katalinié J, Egge H, Mühlradt PF (1989)Biochemistry 28:2923–29.

    Google Scholar 

  43. Horikawa J, Yamasaki M, Iwamori M, Nakakuma H, Takatsuki K, Nagai Y (1991)Glycoconjugate J 8:354–60.

    Google Scholar 

  44. Ebel F, Schmitt E, Peter-Katalinić J, Kniep B, Mühlradt PF (1992)Biochemistry 31:12190–97.

    Google Scholar 

  45. Yohe HC, Cuny CL, Macala LJ, Saito M, McMurray W, Ryan JL (1991)J Immunol 146:1900–8.

    Google Scholar 

  46. Pörtner A, Peter-Katalinić J, Brade H, Unland F, Büntemeyer H, Müthing J (1993)Biochemistry 32:12685–93.

    Google Scholar 

  47. Hirabayashi Y, Hyogo A, Nakao T, Tsuchiya K, Suzuki Y, Matsumoto M, Kon K, Ando S (1990)J Biol Chem 265:8144–51.

    Google Scholar 

  48. Hashimoto Y, Suzuki A, Yamakawa T, Miyashita N, Moriwaki K (1983)J Biochem 94:2043–48.

    Google Scholar 

  49. Nagai Y, Nakaishi H, Sanai Y (1986)Chem Phys Lipids 42:91–103.

    Google Scholar 

  50. Ohsawa T, Nagai Y (1982)Exp Geront 17:287–93.

    Google Scholar 

  51. Ohsawa T (1989)Exp Geront 24:1–9.

    Google Scholar 

  52. Rösner H, Greis C, Rodemann HP (1990)Exp Cell Res 190:161–9.

    Google Scholar 

  53. Kawaguchi T, Takaoka T, Yoshida E, Iwamori M, Takatsuki K, Nagai Y (1988)Exp Cell Res 179:507–16.

    Google Scholar 

  54. Iber H, van Echten G, Klein RA, Sandhoff K (1990)Eur J Cell Biol 52:236–40.

    Google Scholar 

  55. Niimura Y, Ishizuka I (1990)Biochim Biophys Acta 1052:248–54.

    Google Scholar 

  56. Tsuchida T, Ravindranath MH, Saxton RE, Irie RF (1987)Cancer Res 47:1278–81.

    Google Scholar 

  57. Reuter G, Schauer R (1988)Glycoconjugate J 5:133–35.

    Google Scholar 

  58. IUPAC-IUB Commission on biochemical nomenclature (1977)Eur J Biochem 79:11–21.

    Google Scholar 

  59. Svennerholm L (1963)J Neurochem 10:613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: FAB-MS, fast atom bombardment-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycoloylneuraminic acid [57]. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [58] and the nomenclature of Svennerholm [59]. Gangliotriaosylceramide or GgOse3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliotetraosylceramide or GgOse4Cer, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer gangliopentaosylceramide or GgOse5Cer, GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; GM2, II3Neu5Ac-GgOse3Cer; GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GalNAc-GM1b, IV3Neu5Ac-GgOse5Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer; GD1α or GD1e, IV3Neu5Ac, III6Neu5AcGgOse4Cer; GD1e, IV3(Neu5Ac)2-GgOse4Cer; GT1b, IV3Neu5Ac, II3(Neu5Ac)2-GgOse4Cer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müthing, J., Peter-Katalinić, J., Hanisch, FG. et al. The ganglioside GD1α, IV3Neu5Ac, III6Neu5Ac-GgOse4Cer, is a major disialoganglioside in the highly metastatic murine lymphoreticular tumour cell line MDAY-D2. Glycoconjugate J 11, 153–162 (1994). https://doi.org/10.1007/BF00731155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731155

Keywords

Navigation