Skip to main content
Log in

Gene structure of the ‘large’ sialidase isoenzyme fromClostridium perfringens A99 and its relationship with other clostridialnanH proteins

  • Glycopinion Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Clostridium perfringens possesses two sialidase isoenzymes of different molecular weight. Almost 90% of the gene encoding the ‘large’ form was found on a 3.1 kb chromosomal fragment (Sau3AI) of strain A99 by hybridization with probes developed from the N-terminal protein sequence and from commonly conserved sialidase motifs (‘Asp-boxes’), whereas the remaining 3′-terminal part was detected on a 2.1 kb fragment (Hind III) of chromosomal DNA. After combination of both fragments, the resultingE. coli clones expressed sialidase activity, the properties of the recombinant sialidase corresponding with those of the wild type enzyme. The entire chromosomal fragment of 3665 bp encompasses the complete sialidase gene of 2082 bp corresponding to 694 amino aids, from which a molecular weight of 72956 for the mature protein can be deduced. The first 41 amino acids are mostly hydrophobic and probably represent a signal peptide. The sialidase structural gene follows a non-coding region with an inverted repeat and a ribosome-binding site. Upstream from the regulatory region, another open reading frame (ORF) was detected. The 3′-terminus of the sialidase structural gene is directly followed by a further ORF of unknown function, which possibly encodes a putative permease or the acylneuraminate pyruvate-lyase involved in sialic acid catabolism. The primary structure of the ‘large’ isoenzyme is very similar to the sialidase ofClostridium septicum (55% identical amino acids), whereas the homology with the ‘small’ form of the same species is comparatively low (26%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schauer R (1983) InStructural Carbohydrates in the Liver (Popper H, Reutter W, Köttgen E, Gudat F, eds) pp. 83–97. Boston:MTP Press.

    Google Scholar 

  2. Corfield AP, Lambré CR, Michalski J-C, Schauer R (1992)Conferences Philippe Laudat 1991, pp. 111–34. Paris:INSERM.

    Google Scholar 

  3. Müller HE (1992)Bioforum 1/2:16–21.

    Google Scholar 

  4. Godoy VG, Miller Dallas M, Russo TA, Malamy MH (1993)Infect Immun 61:4415–26.

    Google Scholar 

  5. Engstler M, Reuter G, Schauer R (1993)Mol Biochem Parasitol 61:1–14.

    Google Scholar 

  6. Roggentin T, Kleineidam RG, Majewski DM, Tirpitz D, Roggentin P, Schauer R (1993a)J Immunol Meth 157:125–33.

    Google Scholar 

  7. Roggentin P, Schauer R (1993) InGenetics and Molecular Biology of Anaerobic Bacteria (Sebald M, ed) pp. 290–300. New York:Brock/Springer.

    Google Scholar 

  8. Roggentin P, Kleineidam RG, Schauer R (1992a)BioEngineering 2:25.

    Google Scholar 

  9. Nees S, Veh R, Schauer R (1975)Hoppe-Seylers Z Physiol Chem 356:1027–42.

    Google Scholar 

  10. Nees S, Schauer R, Mayer F, Ehrlich K (1976)Hoppe-Seylers Z Physiol Chem 357:839–53.

    Google Scholar 

  11. Nees S, Schauer R (1974)Behring Inst Mitt 55:68–78.

    Google Scholar 

  12. Roggentin P, Schauer R, Hoyer LL, Vimr ER (1993b)Mol Microbiol 9:915–21.

    Google Scholar 

  13. Roggentin P, Rothe B, Lottspeich F, Schauer R (1998a)FEBS Lett 238:314.

    Google Scholar 

  14. Messing J (1983)Methods Enzymol 101:20–78.

    Google Scholar 

  15. Yanisch-Perron C, Vieira J, Messing J (1985)Gene 33:103–19.

    Google Scholar 

  16. Marmur J (1961)J Mol Biol 3:208–18.

    Google Scholar 

  17. Gebers R, Wehmeyer U, Roggentin T, Schlesner H, Kölbel-Boelke J, Hirsch P (1985)Int J Syst Bacteriol 35:260–69.

    Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning — A Laboratory Manual Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Eckerskorn C, Mewes W, Goretzki H, Lottspeich F (1988)Europ J Biochem 176:509–19.

    Google Scholar 

  20. Roggentin P, Rothe B, Kaper JB, Galen J, Lawrisuk L, Vimr ER, Schauer R (1989)Glycoconjugate J 6:349–53.

    Google Scholar 

  21. Southern EM (1975)J Mol Biol 98:503–17.

    Google Scholar 

  22. Davis LG, Dibner MD, Battey JF (1986) InMethods in Molecular Biology, pp 227–29, New York:Elsevier.

    Google Scholar 

  23. Rothe B, Roggentin P, Frank R, Blöcker H, Schauer R (1989)J Gen Microbiol 135:3087–96.

    Google Scholar 

  24. Wallace RB, Johnson MJ, Hirose T, Miyake T, Kawashima EH, Itakura K (1981)Nucl Acids Res 9:879–94.

    Google Scholar 

  25. Sanger F, Nicklen S, Coulson AR (1977)Proc Natl Acad Sci USA 74:5463–67.

    Google Scholar 

  26. Anderberg MR (1973)Cluster Analysis for Applications. New York:Academic Press.

    Google Scholar 

  27. Roggentin P, Gutschker-Gdaniec GHM, Hobrecht R, Schauer R (1988b)Clin Chim Acta 173:251–62.

    Google Scholar 

  28. Schauer R, Sander-Wewer M, Gutschker-Gdaniec GHM, Roggentin P, Randow EA, Hobrecht R (1985)Clin Chim Acta 146:119–27.

    Google Scholar 

  29. Rothe B, Rothe B, Roggentin P, Schauer R (1991)Mol Gen Genetics 226:190–97.

    Google Scholar 

  30. Henningsen M, Roggentin P, Schauer R (1991)Biol Chem Hoppe-Seyler 372:1065–72.

    Google Scholar 

  31. Cato EP, George WL, Finegold SM (1986) InBergey's Manual of Systematic Bacteriology (Snealth PHA, Mair NS, Sharpe ME, Holt JG, eds), Vol. 2, pp. 1141–200. Baltimore:Williams & Wilkins.

    Google Scholar 

  32. Hoyer LL, Hamilton AC, Steenbergen SM, Vimr ER (1992)Mol Microbiol 6:873–84.

    Google Scholar 

  33. Roggentin T, Kleineidam RG, Schauer R, Roggentin P (1992b)Glycoconjugate J 9:235–40.

    Google Scholar 

  34. Dorsch M (1990)Ein Beitrag zur Physlogenie der Grampositiven Eubakterien. Kiel: Dissertation.

  35. Guo X, Sinnott ML (1993)Biochem J 296:291–92.

    Google Scholar 

  36. Vimr ER, Troy FA (1985a)J Bacteriol 164:845–53.

    Google Scholar 

  37. Vimr ER, Troy FA (1985b)J Bacteriol 164:854–60.

    Google Scholar 

  38. Ohta Y, Watanabe K, Kimura A (1985)Nucl Acids Res 13:8843–52.

    Google Scholar 

  39. Canard B, Cole ST (1990)FEMS Microbiol Lett 66:323–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traving, C., Schauer, R. & Roggentin, P. Gene structure of the ‘large’ sialidase isoenzyme fromClostridium perfringens A99 and its relationship with other clostridialnanH proteins. Glycoconjugate J 11, 141–151 (1994). https://doi.org/10.1007/BF00731154

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731154

Keywords

Navigation