Skip to main content
Log in

An improved method for the measurement of total lipid-bound sialic acids after cleavage of α2,8 sialic acid linkage withVibrio cholerae sialidase in the presence of cholic acid, SDS and Ca2+

  • Glycopinion Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In the measurement of total lipid-bound sialic acids involving periodic acid oxidation, as in the periodate-resorcinol assay, the inner sialic acids of disialoglycolipids (such as GD3 and GD2) are not involved because their α2,8 ketosidic linkages are resistant to periodic acid oxidation, even after acid/enzyme hydrolysis or alkali pretreatment. However, the sialic acids from these glycolipids can be recovered completely after cleavage of α2,8 linkages byV. cholerae sialidase in the presence of cholic acid, sodium dodecyl sulphate and calcium. Interestingly, removal of calcium or detergent(s) or both significantly minimizes the sialidase action on the disialyl residues of these gangliosides. Therefore, we recommend sialidase (Vibrio cholerae) pretreatment of the glycolipids in the presence of cholic acid, SDS and Ca2+ for complete recovery of sialic acids from di- and polysialogangliosides and for accurate measurement of total lipid-bound sialic acids by periodate-resorcinol assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mabry EW, Carubelli R (1972)Experientia 28:182–83.

    Google Scholar 

  2. Horgan IE (1982)Clin Chim Acta 118:327–31.

    Google Scholar 

  3. Ravindranath MH, Irie RF (1988) InMalignant Melanoma: Biology, Diagnosis, and Therapy (Nathanson L, ed.) pp. 14–17. Boston: Kluwer Academic.

    Google Scholar 

  4. Ladisch S, Wu ZL, Feig S, Ulsh L, Schwartz E, Floutsis G, Wiley F, Lenarsky C, Seeger C (1987)Int J Cancer 39:73–76.

    Google Scholar 

  5. Narasimhan R, Murray RK (1979)Biochem J 179:199–211.

    Google Scholar 

  6. Hogan-Ryan A, Fennelly JJ, Jones M, Cantwell B, Buffy MJ (1980)Br J Cancer 41:587–92.

    Google Scholar 

  7. Goff B, Lee WMF, Westerick MA, Macher BA (1983)Eur J Biochem 130:553–57.

    Google Scholar 

  8. Tsuchida T, Otsuka H, Niimura M, Inoue Y, Kukita A, Hashimoto Y, Seyama Y, Yamakawa T (1984)J Dermatol 11:129–36.

    Google Scholar 

  9. Bouchon B, Portoukalian J, Bornet H (1985)Biochem Int 10:531–38.

    Google Scholar 

  10. Fredman P, van Holst H, Collins VP, Ammar A, Delheden B, Wahren B, Granholm L, Svennerholm L (1986)Neurol Res 8:123–26.

    Google Scholar 

  11. Berra B, Gaini SM, Ribino L (1985)Int J Cancer 36:363–66.

    Google Scholar 

  12. Berra BM, Riboni L, De G, Gaini SM, Ragnotti G (1983)J Neurochem 40:777–82.

    Google Scholar 

  13. Sunder-Plassman M, Bernheimer H (1974)Acta Neuropathol (Berl)27:289–94.

    Google Scholar 

  14. Westrick A, Lee WMF, Goff B, Macher BA (1983)Biochim Biophys Acta 750:141–45.

    Google Scholar 

  15. Portoukalian J, Zwingelstein G, Abdul-Malak N, Dore JF (1978)Biochem Biophys Res Commun 85:916–20.

    Google Scholar 

  16. Senn H, Orth M, Fitzke E, Koster W, Wieland H, Gerok W (1992)Atherosclerosis 94:109–17.

    Google Scholar 

  17. Ravindranath MH, Morton DL (1991)Intern Rev Immunol 7:303–29.

    Google Scholar 

  18. Grayson G, Ladisch S (1992)Cell Immunol 139:18–29.

    Google Scholar 

  19. Schauer R (1987)Method Enzymol 138:132–61.

    Google Scholar 

  20. Spiro RG (1964)J Biol Chem 239:567–73.

    Google Scholar 

  21. Jourdian GW, Dean L, Roseman S (1971)J Biol Chem 246:430–35.

    Google Scholar 

  22. Ledeen RW, Yu RK (1982)Methods Enzymol 83:139–91.

    Google Scholar 

  23. Tsuchida T, Ravindranath MH, Saxton RE, Irie RF (1987)Cancer Res 47:1278–81.

    Google Scholar 

  24. Tsuchida T, Saxton RE, Morton DL, Irie RF (1989)Cancer 63:1166–74.

    Google Scholar 

  25. Senn H, Orth M, Fitzke E, Wieland H, Gerok W (1989)Eur J Biochem 181:657–62.

    Google Scholar 

  26. Takamizawa K, Iwamori M, Mutai M, Nagai Y (1986)J Biol Chem 261:5625–30.

    Google Scholar 

  27. Ren S, Scarsdale JN, Ariga T, Zhang Y, Klein RA, Hartmann R, Kushi Y, Egge H, Yu RK (1992)J Biol Chem 267:12632–38.

    Google Scholar 

  28. McGuire EJ, Binkley SB (1964)Biochemistry 3:247–50.

    Google Scholar 

  29. Corfield AP, Schauer R, Dorland L, Vliegenthart JFG, Wiegandt H (1985)J Biochem (Tokyo)97:449–54.

    Google Scholar 

  30. Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JMet al. (1984)Biochem Biophys Res Commun 120:500–4.

    Google Scholar 

  31. Ravindranath MH, Tsuchida T, Morton DL, Irie RF (1991)Cancer 67:3029–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maliakal, M.A., Ravindranath, M.H., Irie, R.F. et al. An improved method for the measurement of total lipid-bound sialic acids after cleavage of α2,8 sialic acid linkage withVibrio cholerae sialidase in the presence of cholic acid, SDS and Ca2+ . Glycoconjugate J 11, 97–104 (1994). https://doi.org/10.1007/BF00731149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731149

Keywords

Navigation