Skip to main content
Log in

Comparison of theN-glycoloylneuraminic andN-acetylneuraminic acid content of platelets and their precursors using high performance anion exchange chromatography

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-Acetylneuraminic acid (Neu5Ac) andN-glycoloylneuraminic acid (Neu5Gc) are distributed widely in nature. Using a Carbopac PA-1 anion exchange column, we have determined the ratios of Neu5Ac and Neu5Gc in hydrolysates of platelets and their precursors: a rat promegakaryoblastic (RPM) cell line and a human megakaryoblastic leukemia cell line (MEG-01). The ratio of Neu5Gc:Neu5Ac in cultured RPM cells is 16:1, whereas in platelet rich plasma and cultured MEG-01 cells it is 1:38 and 1:28, respectively. The nature of these sialic acids from RPM cells was verified using thin layer chromatography and liquid secondary ion mass spectrometry. The relevance of increased Neu5Gc levels in early stages of development is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Neu5Ac:

N-acetylneuraminic acid

Neu5Gc:

N-glycoloylneuraminic acid

RPM:

rat promegakaryoblast

MEG-01:

human megakaryoblastic leukaemia cell line

PAD:

pulsed amperometric detection

WGA:

wheat germ agglutinin

FCS:

foetal calf serum

PPEADF:

phosphatidylethanolamine dipalmitoyl

LSIMS:

liquid secondary ion mass spectrometry

HPAEC:

high performance anion exchange chromatography

TBA:

thiobarbituric acid

References

  1. Weinstein R, Stemerman MB, MacIntyre DE, Steinberg HN, Maciag T (1981)Blood 58:110–21.

    Google Scholar 

  2. Martin JF, Slater DN, Trowbridge EA (1983)Lancet i:793–6.

    Google Scholar 

  3. Crook M (1991)Platelets 2:1–10.

    Google Scholar 

  4. Cornfield AP, Schauer R (1982) inSialic Acids, Chemistry, Metabolism and Function. (Schauer R., ed.), pp. 5–50. Berlin: Springer-Verlag.

    Google Scholar 

  5. Kawai T, Kato A, Higashi H, Kato S, Naiki M (1991)Cancer Res 51:1242–6.

    Google Scholar 

  6. Schick PK, Filmyer WG (1985)Blood 65:1120–6.

    Google Scholar 

  7. Ogura M, Morishima Y, Ohno R, Kato Y, Hirabayashi N, Nagura H, Saito H (1985)Blood 66:1384–92.

    Google Scholar 

  8. Catalfamo JL, Dodds WJ (1989)Methods Enzymol. 169:27–34.

    Google Scholar 

  9. Lowry OH, Roseborough NJ, Farr AL, Randell RJ (1951)J. Biol. Chem. 193:265–75

    Google Scholar 

  10. Warren L (1959)J Biochem (Tokyo)234:1971–5.

    Google Scholar 

  11. Manzi AE, Diax S, Varki A (1990)Anal Biochem 188:20–32.

    Google Scholar 

  12. Hammond KS, Papermaster DS (1976)Anal Biochem 74:292–7.

    Google Scholar 

  13. Stoll MS, Mizouchi T, Childs RA, Feizi T (1988)Biochem J 256:661–4.

    Google Scholar 

  14. Lawson AM, Chai W, Cashmore GC, Stoll MS, Hounsell EF, Feizi T (1990)Carbohydr Res 200:47–57.

    Google Scholar 

  15. Cabezas M, Cabezas JA (1973)Rev Esp Fisol 29:323–8.

    Google Scholar 

  16. Spiro RG (1960)J Biol Chem 235:2860–9.

    Google Scholar 

  17. Magnet-Dana R, Veh RW, Sander M, Roche AC, Schauer R, Monsigny M (1981)Eur J Biochem 114:11–16.

    Google Scholar 

  18. Shaw L, Schauer R (1989)Biochem J 263:355–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budd, T.J., Dolman, C.D., Lawson, A.M. et al. Comparison of theN-glycoloylneuraminic andN-acetylneuraminic acid content of platelets and their precursors using high performance anion exchange chromatography. Glycoconjugate J 9, 274–278 (1992). https://doi.org/10.1007/BF00731139

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731139

Keywords

Navigation