Skip to main content
Log in

Characterization of a glucuronyltransferase: neolactotetraosylceramide glucuronyltransferase from rat brain

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The properties of a rat brain glucuronyltransferase, which is presumed to be associated with the biosynthesis of the HNK-1 epitope on sulfoglucuronyl glycolipids, are described. The enzyme required divalent cations for reaction, with maximal activity at 10mm Mn2+, and exhibited a dual optimum at pH 4–5 and pH 6 depending upon the buffer used, with the highest activity at pH 4.5 in MES buffer. This enzyme strictly recognized the Galβ1-4GlcNAc terminal structure, and was highly specific for neolacto (type 2) glycolipids as acceptor. The enzyme was localized specifically in the brain, and was barely detected in other issues, including the thymus, spleen, liver, kidney, lung, and sciatic nerve fibres. Phosphatidylinositol and phosphatidylserine increased the enzymatic reaction 4.4- and 2.3-fold, respectively, whereas phosphatidylcholine slightly decreased the rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GlcA:

glucuronic acid

Lc-PA14 :

lactotetraose-phenyl-C14H29

nLc-PA14 :

neolactotetraose-phenyl-C14H29

nLcOse4-Cer:

neolactotetraosylceramide

NP-40:

Nonidet P-40

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

SGGL:

sulfoglucuronyl glycolipid

References

  1. Roth S, McGuine EJ, Roseman J (1971)J Cell Biol 51: 526–47.

    Google Scholar 

  2. Evelyn MB, Joel HS, Barry DS (1988)Cell 53: 145–57.

    Google Scholar 

  3. Brandley BK, Swiedler SJ, Robbins PW (1990)Cell 63: 861–3.

    Google Scholar 

  4. Jessell TM, Hynes MA, Dodd J (1990)Annu Rev Neurosci 13: 227–55.

    Google Scholar 

  5. Abo T, Balch CM (1981)J Immunol 127: 1024–9.

    Google Scholar 

  6. Yoshihara Y, Oka S, Ikeda J, Mori K (1991)Neurosci Res 10: 83–105.

    Google Scholar 

  7. Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984)Nature 311: 153–5.

    Google Scholar 

  8. Kruse J, Keilhauser G, Faissner A, Timpl R, Schachner M (1985)Nature 316: 146–8.

    Google Scholar 

  9. McGarry RC, Helfand SL, Quarles RH, Roder JC (1983)Nature 306: 376–8.

    Google Scholar 

  10. Poltorak M, Sadoul R, Keilhauer G, Landa C, Fahrig T, Schachner M (1987)J Cell Biol 105: 1893–9.

    Google Scholar 

  11. Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM (1988)Neuron 1: 105–16.

    Google Scholar 

  12. Bollensen E, Schachner M (1987)Neurosci Lett 82: 77–82.

    Google Scholar 

  13. Ilyas AA, Quarles RH, Brady RO (1984)Biochem Biophys Res Commun 122: 1206–11.

    Google Scholar 

  14. Ilyas AA, Dalakas MC, Brady RO, Quarles RH (1986)Brain Res 385: 1–9.

    Google Scholar 

  15. Noronha AB, Ilyas AA, Antonicek H, Schachner M, Quarles RH (1986)Brain Res 385: 237–44.

    Google Scholar 

  16. Schwarting GA, Jungalwala FB, Chou DKH, Boyer AM, Yamamoto M (1986)Dev Biol 120: 65–76.

    Google Scholar 

  17. Chou DKH, Prasadarao N, Koul O, Jungalwala FB (1991)J Neurochem 57: 852–9.

    Google Scholar 

  18. Chou KH, Ilyas AA, Evans JE, Quarles RH, Jungalwala FB (1985)Biochem Biophys Res Commun 128: 383–8.

    Google Scholar 

  19. Chou DKH, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986)J Biol Chem 261: 11717–25.

    Google Scholar 

  20. Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, Suzuki M, Hemling ME, Rinehart KL, Kusunoki S, Yu RK (1987)J Biol Chem 262: 848–53.

    Google Scholar 

  21. Riopelle RJ, McGarry RC, Roder JC (1986)Brain Res 367: 20–25.

    Google Scholar 

  22. Cole GJ, Schachner M (1987)Neurosci Lett 78: 227–32.

    Google Scholar 

  23. Kunemund V, Jungalwala FB, Fischer G, Chou DKH, Keilhauer G, Schachner M (1988)J Cell Biol 106: 213–23.

    Google Scholar 

  24. Faissner A (1987)Neurosci Lett 83: 327–32.

    Google Scholar 

  25. Burger D, Simon M, Perruisseau G, Steck AJ (1990)J Neurochem 54: 1569–75.

    Google Scholar 

  26. Yoshihara Y, Oka S, Watanabe Y, Mori K (1991)J Cell Biol 115: 731–44.

    Google Scholar 

  27. Das KK, Basu M, Basu S, Chou DKH, Jungalwala FB (1991)J Biol Chem 266: 5238–43.

    Google Scholar 

  28. Chou DKH, Flores S, Jungalwala FB (1991)J Biol Chem 266: 17941–7.

    Google Scholar 

  29. Fishman PH, Brady RO, Henneberry RC (1976)Arch Biochem Biophys 172: 618–26.

    Google Scholar 

  30. Bradford MM (1976)Anal Biochem 72: 248–54.

    Google Scholar 

  31. Folch J, Ascoli I, Lees M, Meath JA, LeBaron FN (1951)J Biol Chem 191: 833–41.

    Google Scholar 

  32. Burchell B, Coughtrie MW (1989)Pharmac Ther 43: 261–89.

    Google Scholar 

  33. Lazard D, Zupko K, Poria Y, Nef P, Lazarovits J, Horn S, Khen M, Lancet D (1991)Nature 349: 790–3.

    Google Scholar 

  34. Zakim D, Cantor M, Eibl H (1988)J Biol Chem 263: 5164–96.

    Google Scholar 

  35. Yokota H, Fukuda T, Yuasa A (1991)J Biochem (Tokyo)110: 50–3.

    Google Scholar 

  36. Svennerholm L (1956)J Neurochem 1: 42–53.

    Google Scholar 

  37. Oka S, Terayama K, Kawashima C, Kawasaki T (1992)J Biol Chem 267:22711–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashima, C., Terayama, K., Masayuki et al. Characterization of a glucuronyltransferase: neolactotetraosylceramide glucuronyltransferase from rat brain. Glycoconjugate J 9, 307–314 (1992). https://doi.org/10.1007/BF00731091

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731091

Keywords

Navigation