Advertisement

Glycoconjugate Journal

, Volume 9, Issue 6, pp 307–314 | Cite as

Characterization of a glucuronyltransferase: neolactotetraosylceramide glucuronyltransferase from rat brain

  • Chika Kawashima
  • Koji Terayama
  • MasayukiII
  • Shogo Oka
  • Toshisuke Kawasaki
Papers

Abstract

The properties of a rat brain glucuronyltransferase, which is presumed to be associated with the biosynthesis of the HNK-1 epitope on sulfoglucuronyl glycolipids, are described. The enzyme required divalent cations for reaction, with maximal activity at 10mm Mn2+, and exhibited a dual optimum at pH 4–5 and pH 6 depending upon the buffer used, with the highest activity at pH 4.5 in MES buffer. This enzyme strictly recognized the Galβ1-4GlcNAc terminal structure, and was highly specific for neolacto (type 2) glycolipids as acceptor. The enzyme was localized specifically in the brain, and was barely detected in other issues, including the thymus, spleen, liver, kidney, lung, and sciatic nerve fibres. Phosphatidylinositol and phosphatidylserine increased the enzymatic reaction 4.4- and 2.3-fold, respectively, whereas phosphatidylcholine slightly decreased the rate.

Keywords

glucuronyltransferase HNK-1 antigen rat brain 

Abbreviations

GlcA

glucuronic acid

Lc-PA14

lactotetraose-phenyl-C14H29

nLc-PA14

neolactotetraose-phenyl-C14H29

nLcOse4-Cer

neolactotetraosylceramide

NP-40

Nonidet P-40

PC

phosphatidylcholine

PE

phosphatidylethanolamine

PI

phosphatidylinositol

PS

phosphatidylserine

SGGL

sulfoglucuronyl glycolipid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roth S, McGuine EJ, Roseman J (1971)J Cell Biol 51: 526–47.Google Scholar
  2. 2.
    Evelyn MB, Joel HS, Barry DS (1988)Cell 53: 145–57.Google Scholar
  3. 3.
    Brandley BK, Swiedler SJ, Robbins PW (1990)Cell 63: 861–3.Google Scholar
  4. 4.
    Jessell TM, Hynes MA, Dodd J (1990)Annu Rev Neurosci 13: 227–55.Google Scholar
  5. 5.
    Abo T, Balch CM (1981)J Immunol 127: 1024–9.Google Scholar
  6. 6.
    Yoshihara Y, Oka S, Ikeda J, Mori K (1991)Neurosci Res 10: 83–105.Google Scholar
  7. 7.
    Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984)Nature 311: 153–5.Google Scholar
  8. 8.
    Kruse J, Keilhauser G, Faissner A, Timpl R, Schachner M (1985)Nature 316: 146–8.Google Scholar
  9. 9.
    McGarry RC, Helfand SL, Quarles RH, Roder JC (1983)Nature 306: 376–8.Google Scholar
  10. 10.
    Poltorak M, Sadoul R, Keilhauer G, Landa C, Fahrig T, Schachner M (1987)J Cell Biol 105: 1893–9.Google Scholar
  11. 11.
    Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM (1988)Neuron 1: 105–16.Google Scholar
  12. 12.
    Bollensen E, Schachner M (1987)Neurosci Lett 82: 77–82.Google Scholar
  13. 13.
    Ilyas AA, Quarles RH, Brady RO (1984)Biochem Biophys Res Commun 122: 1206–11.Google Scholar
  14. 14.
    Ilyas AA, Dalakas MC, Brady RO, Quarles RH (1986)Brain Res 385: 1–9.Google Scholar
  15. 15.
    Noronha AB, Ilyas AA, Antonicek H, Schachner M, Quarles RH (1986)Brain Res 385: 237–44.Google Scholar
  16. 16.
    Schwarting GA, Jungalwala FB, Chou DKH, Boyer AM, Yamamoto M (1986)Dev Biol 120: 65–76.Google Scholar
  17. 17.
    Chou DKH, Prasadarao N, Koul O, Jungalwala FB (1991)J Neurochem 57: 852–9.Google Scholar
  18. 18.
    Chou KH, Ilyas AA, Evans JE, Quarles RH, Jungalwala FB (1985)Biochem Biophys Res Commun 128: 383–8.Google Scholar
  19. 19.
    Chou DKH, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986)J Biol Chem 261: 11717–25.Google Scholar
  20. 20.
    Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, Suzuki M, Hemling ME, Rinehart KL, Kusunoki S, Yu RK (1987)J Biol Chem 262: 848–53.Google Scholar
  21. 21.
    Riopelle RJ, McGarry RC, Roder JC (1986)Brain Res 367: 20–25.Google Scholar
  22. 22.
    Cole GJ, Schachner M (1987)Neurosci Lett 78: 227–32.Google Scholar
  23. 23.
    Kunemund V, Jungalwala FB, Fischer G, Chou DKH, Keilhauer G, Schachner M (1988)J Cell Biol 106: 213–23.Google Scholar
  24. 24.
    Faissner A (1987)Neurosci Lett 83: 327–32.Google Scholar
  25. 25.
    Burger D, Simon M, Perruisseau G, Steck AJ (1990)J Neurochem 54: 1569–75.Google Scholar
  26. 26.
    Yoshihara Y, Oka S, Watanabe Y, Mori K (1991)J Cell Biol 115: 731–44.Google Scholar
  27. 27.
    Das KK, Basu M, Basu S, Chou DKH, Jungalwala FB (1991)J Biol Chem 266: 5238–43.Google Scholar
  28. 28.
    Chou DKH, Flores S, Jungalwala FB (1991)J Biol Chem 266: 17941–7.Google Scholar
  29. 29.
    Fishman PH, Brady RO, Henneberry RC (1976)Arch Biochem Biophys 172: 618–26.Google Scholar
  30. 30.
    Bradford MM (1976)Anal Biochem 72: 248–54.Google Scholar
  31. 31.
    Folch J, Ascoli I, Lees M, Meath JA, LeBaron FN (1951)J Biol Chem 191: 833–41.Google Scholar
  32. 32.
    Burchell B, Coughtrie MW (1989)Pharmac Ther 43: 261–89.Google Scholar
  33. 33.
    Lazard D, Zupko K, Poria Y, Nef P, Lazarovits J, Horn S, Khen M, Lancet D (1991)Nature 349: 790–3.Google Scholar
  34. 34.
    Zakim D, Cantor M, Eibl H (1988)J Biol Chem 263: 5164–96.Google Scholar
  35. 35.
    Yokota H, Fukuda T, Yuasa A (1991)J Biochem (Tokyo)110: 50–3.Google Scholar
  36. 36.
    Svennerholm L (1956)J Neurochem 1: 42–53.Google Scholar
  37. 37.
    Oka S, Terayama K, Kawashima C, Kawasaki T (1992)J Biol Chem 267:22711–4.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Chika Kawashima
    • 1
  • Koji Terayama
    • 1
  • MasayukiII
    • 1
  • Shogo Oka
    • 1
  • Toshisuke Kawasaki
    • 1
  1. 1.Department of Biological Chemistry, Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations