Skip to main content
Log in

Lysosomal sulfate efflux following glycosaminoglycan degradation: measurements in enzyme-supplemented Maroteaux-Lamy syndrome fibroblasts and isolated lysosomes

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Studies using lysosomal membrane vesicles have suggested that efflux of the sulfate that results from lysosomal glycosaminoglycan degradation is carrier-mediated. In this study, glycosaminoglycan degradation and sulfate efflux were examined using cultured skin fibroblasts and lysosomes deficient in the lysosomal enzymeN-acetylgalactosamine-4-sulfatase. Such fibroblasts store dermatan sulfate lysosomally, which could be labelled biosynthetically with Na 352 SO4. The addition of recombinantN-acetylgalactosamine-4-sulfatase to the media of35S labelled fibroblasts degraded up to 82% of the stored dermatan [35S] sulfate over a subsequent 96 h chase and released inorganic [35S] sulfate into the medium. In the presence of 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), sulfate was reused to a minor extent in newly synthesized proteoglycan. Isolated granules from recombinant enzyme supplemented fibroblasts degraded stored dermatan [35S]sulfate to sulfate which was rapidly released into the medium at a rate that was reduced by the extra-lysosomal presence of the lysosomal sulfate transport inhibitors SITS, Na2SO4 and Na2MoO4. SITS also inhibited dermatan sulfate turnover, although it had no effect on the action of purified recombinant enzymein vitro. These data imply that sulfate clearance occurred concomitantly with dermatan sulfate turnover in the lysosome even at high substrate loading, and that lysosome-derived sulfate, while available, is reutilized minimally in synthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SITS:

4-acetamido-4′-isothiocyanatostilbene-2,-2′-disulfonic acid

GAG:

glycosaminoglycan

4S:

N-acetylgalactosamine-4-sulfatase

r4S:

recombinant humanN-acetylgalactosamine-4-sulfatase

PBS:

phosphate buffered saline

BME:

basal modified Eagle's medium

FBS:

fetal bovine serum

GalNAc4S-GlcA-GalitolNAc4S:

β-(N-acetyl-d-galactosamine-4-sulfate)-(1–4)-β-d-glucuronic acid)-(1–3)-N-acetyl-d-[1-3H]galactosaminitol-4-sulfate

DS:

dermatan sulfate

MPS:

mucopolysaccharidosis

References

  1. Freeman C, Hopwood JJ (1992) inHeparin and Related Polysaccharides (Lane D, Lindahl U, eds), pp 191–228. London: Edward Arnold.

    Google Scholar 

  2. Bame K, Rome LH (1985)J Biol Chem 260:11293–9.

    Google Scholar 

  3. Forster S, Lloyd JB (1988)Biochim Biophs Acta 947:465–91.

    Google Scholar 

  4. Rome LH, Hill DF, Bame KJ, Crain LR (1983)J Biol Chem 258:3006–11.

    Google Scholar 

  5. Tietze K, Kohn AD, Kohn LD, Bernardini I, Andersson HC, Adamson MD, Harper GS, Gahl WA (1989)J Biol Chem 264:4762–65.

    Google Scholar 

  6. Pisoni RL, Flickinger KS, Thoene JG, Christensen HN (1987)J Biol Chem 262:6010–17.

    Google Scholar 

  7. Pisoni RL, Thoene JG, Christensen HN (1985)J Biol Chem 260:4791–98.

    Google Scholar 

  8. Mancini GM, de Jong HR, Galjaard H, Verheijen FW (1989)J Biol Chem 264:15247–54.

    Google Scholar 

  9. Bernar J, Tietze F, Kohn LD, Bernardini I, Harper GS, Grollman EF, Gahl WA (1986)J Biol Chem 261:17107–12.

    Google Scholar 

  10. Tietze F, Seppala R, Renlund M, Hopwood JJ, Harper GS, Thomas GH, Gahl WA (1989)J Biol Chem 264:15316–22.

    Google Scholar 

  11. Jonas AJ, Speller RJ, Conrad PB, Dubinsky WP (1989)J Biol Chem 264:4953–56.

    Google Scholar 

  12. Lloyd JB (1979)Biochem J 115:703–7.

    Google Scholar 

  13. Docherty K, Brenchley GV, Hales CN (1979)Biochem J 178:361–6.

    Google Scholar 

  14. Jonas AJ, Jobe H (1990)J Biol Chem 265:17545–9.

    Google Scholar 

  15. Pisoni RL (1991)J Biol Chem 266:979–85.

    Google Scholar 

  16. Gahl WA, Bashan N, Tietze F. Bernardini I, Schulman JD (1982)Science 217:1263–5.

    Google Scholar 

  17. Rome LH, Hill DF (1986)Biochem J 235:707–13.

    Google Scholar 

  18. Rome LH, Crain LR (1981)J Biol Chem 256:10763–8.

    Google Scholar 

  19. McKusick VA, Neufeld EF (1983) inMetabolic Basis of Inherited Disease, 5th Edn (Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, eds), pp 751–77. New York: McGraw-Hill.

    Google Scholar 

  20. Cöster L, Carlstedt T, Malmström A, Särnstrang B (1984)Biochem J 220:575–82.

    Google Scholar 

  21. Anson DS, Taylor JA, Bielicki J, Harper GS, Peters C, Gibson GJ, Hopwood JJ (1992)Biochem J 284:789–94.

    Google Scholar 

  22. Hopwood JJ, Muller V, Harrison JR, Carey WF, Elliott H, Robertson EF, Pollard AC (1982)Med J Aust I:257–60.

    Google Scholar 

  23. Taylor JA, Gibson GJ, Brooks DA, Hopwood JJ (1990)Biochem J 268:379–86.

    Google Scholar 

  24. Brooks DA, McCourt PAG, Gibson GJ, Ashton LJ, Shutter M, Hopwood JJ (1991)Am J Human Genet 48:710–19.

    Google Scholar 

  25. Yanagishita M, Hascall VC (1984)J Biol Chem 259:10260–9.

    Google Scholar 

  26. Wasteson A (1971)J Chromatogr 59:87–97.

    Google Scholar 

  27. Keller JM, Keller KM (1987)Biochim Biophs Acta 926:139–44.

    Google Scholar 

  28. King BM, Rozaklis T, Hopwood JJ, Harper GS (1992)Biochem Med Metab Biol 47:260–4.

    Google Scholar 

  29. Singh H, Derwas N, Poulos A (1987)Arch Biochem Biophys 259:382–90.

    Google Scholar 

  30. Buckmaster MJ, Ferris AL, Storrie B (1988)Biochem J 249:931–23.

    Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT, Mallia A, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985)Anal Biochem 150:76–85.

    Google Scholar 

  32. Brown, RE, Jarvis KL, Hyland KH (1989)Anal Biochem 180:136–39.

    Google Scholar 

  33. Gibson GJ, Saccone GTP, Brooks DA, Clements PR, Hopwood JJ (1987)Biochem J 248:755–64.

    Google Scholar 

  34. Hopwood JJ, Elliott H, Muller VJ, Saccone GTP (1986)Biochem J 234:507–14.

    Google Scholar 

  35. Blumenkrantz N, Asboe-Hanson G (1973)Anal Biochem 54:484–89.

    Google Scholar 

  36. Harper GS, Hascall VC, Yanagishita M, Gahl WA (1987)J Biol Chem 262:5637–43.

    Google Scholar 

  37. Hopwood JJ (1979)Carbohydr Res 69:203–16.

    Google Scholar 

  38. Maroteaux P, Leveque B, Marie J, Lamy M (1962)Presse Méd 71:1849.

    Google Scholar 

  39. Hopwood JJ, Elliott H (1985)Biochem J 229:579–86.

    Google Scholar 

  40. Holtzman E (1989)Lysosomes, pp 270–271. New York: Plenum

    Google Scholar 

  41. Elgavish A, Meezan E (1988)Biochem Biophys Res Commun 152:99–106.

    Google Scholar 

  42. Schneider DL (1983)J Biol Chem 258:1833–8.

    Google Scholar 

  43. Boyd CAR, Shennan DB (1986)J Physiol 379:367–76.

    Google Scholar 

  44. Stankiewicz PJ, Gresser MJ (1988)Biochemistry 27:206–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, G.S., Rozaklis, T., Bielicki, J. et al. Lysosomal sulfate efflux following glycosaminoglycan degradation: measurements in enzyme-supplemented Maroteaux-Lamy syndrome fibroblasts and isolated lysosomes. Glycoconjugate J 10, 407–415 (1993). https://doi.org/10.1007/BF00731045

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731045

Keywords

Navigation