Skip to main content
Log in

ProcessingO-glycan core 1, Galβ1-3GalNAcα-R. Specificities of core 2, UDP-GlcNAc: Galβ1-3GalNAc-R(GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase and CMP-sialic acid:Galβ1-3GalNAc-R α3-sialyltransferase

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Galβ1-3GalNAc-R(GlcNAc to GalNAc) β6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 β6-GlcNAc-T) and CMP-sialic acid: Galβ1-3GalNAc-R α3-sialyltransferase (EC 2.4.99.4; α3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 β6-GlcNAc-T activity; core 2 β6-GlcNAc-T from mucin secreting tissue (named core 2 β6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAcβ1-6(GlcNAcβ1-3)GalNAc-R] and blood group I [GlcNAcβ1-6(GlcNAcβ1-3)Galβ-R] branches; core 2 β6-GlcNAc-T in leukemic cells (named core 2 β-GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 β6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Galβ1-3GalNAcα-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. α3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Galβ1-3GalNAcα-Bn. Galβ1-3(6-deoxy)GalNAcα-Bn and 3-deoxy-Galβ1-3GalNAcα-Bn competitively inhibited core 2 β6-GlcNAc-T and α3-sialyltransferase activities, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFGP:

antifreeze glycoprotein

AML:

acute myeloid leukemia

Bn:

benzyl

CML:

chronic myelogenous leukemia

Fuc:

l-fucose

Gal, G:

d-galactose

GalNAc, GA:

N-acetyl-d-galactosamine

GlcNAc, Gn:

N-acetyl-d-glucosamine

HC:

human colonic homogenate

HO:

hen oviduct microsomes

HPLC:

high performance liquid chromatography

mco:

8-methoxycarbonyl-octy

Me:

methyl

MES:

2-(N-morpholino)ethanesulfonate

MK:

mouse kidney homogenate

onp:

o-nitrophenyl

PG:

pig gastric mucosal microsomes

pnp:

p-nitrophenyl

RC:

rat colonic mucosal microsomes

SA:

sialic acid

T:

transferase

References

  1. Carlsson SR, Sasaki H, Fukuda M (1986)J Biol Chem 261:12787–95.

    Google Scholar 

  2. Fukuda M, Carlsson SR, Klock JC, Dell A (1986)J Biol Chem 261:12796–806.

    Google Scholar 

  3. Saitoh O, Piller F, Fox RI, Fukuda M (1991)Blood 77:1491–9.

    Google Scholar 

  4. Saitoh O, Gallegher RE, Fukuda M (1991)Cancer Res 51:2854–62.

    Google Scholar 

  5. Fukuda M (1991)Glycobiology 1:347–56.

    Google Scholar 

  6. Schachter H, Brockhausen I (1992) InGlycoconjugates, Composition, Structure and Function, pp 263–331 (Allen H, Kisailus, EC, Eds) New York: Marcel Dekker.

    Google Scholar 

  7. Kuhns W, Oliver R, Watkins W, Greenwell P (1980)Cancer Res 40:268–75.

    Google Scholar 

  8. Brockhausen I, Kuhns W, Schachter H, Matta KL, Sutherland DR, Baker MA (1991)Cancer Res. 51:1257–63.

    Google Scholar 

  9. Baker MA, Taub RN, Kanani A, Brockhausen I, Hindenburg A (1985)Blood 66:1068–71.

    Google Scholar 

  10. Baker MA, Kanani A, Brockhausen I, Schachter H, Hindenburg A, Taub RN (1987)Cancer Res 47:2763–6.

    Google Scholar 

  11. Kanani A, Sutherland DR, Fibach E, Matta KL, Hindenburg A, Brockhausen I, Kuhns W, Taub RN, van den Eijnden DH, Baker MA (1990)Cancer Res 50:5003–7.

    Google Scholar 

  12. Williams D, Schachter H (1980)J Biol Chem 255:11247–52.

    Google Scholar 

  13. Williams D, Longmore G, Matta KL, Schachter H (1980)J Biol Chem 255:11253–61.

    Google Scholar 

  14. Wingert WE, Cheng P-W (1984)Biochemistry 23:690–7.

    Google Scholar 

  15. Brockhausen I, Matta KL, Orr J, Schachter H (1985)Biochemistry 24:1866–74.

    Google Scholar 

  16. Brockhausen I, Matta KL, Orr J, Schachter H. Koenderman A, van den Eijnden DH (1986)Eur J Biochem 157:463–74.

    Google Scholar 

  17. Cheng P-W, Wingert WE, Little MR, Wei R (1985)Biochem J 227:405–12.

    Google Scholar 

  18. Ropp PA, Little MR, Cheng P-W (1991)J Biol Chem 266:23863–71.

    Google Scholar 

  19. Bierhuizen MA, Fukuda M (1992)Proc Nat Acad Sci USA 89:9326–30.

    Google Scholar 

  20. Brockhausen I, Romero PA, Herscovics A (1991)Cancer Res. 51:3136–42.

    Google Scholar 

  21. Piller F. Piller V, Fox R, Fukuda M (1988)J Biol Chem 263:15146–50.

    Google Scholar 

  22. Higgins EA, Siminovitch KA, Zhuang D, Brockhausen I, Dennis JW (1991)J Biol Chem 266:6280–90.

    Google Scholar 

  23. Piller F. Le Deist F, Weinberg KI, Parkman R, Fukuda M (1991)J Exp Med 173:1501–10.

    Google Scholar 

  24. Yousefi S, Higgins E, Zhuang D, Pollex-Krüger A, Hindsgaul O, Dennis JW (1991)J Biol Chem 266:1772–82.

    Google Scholar 

  25. Piller F, Cartron J-P, Maranduba A, Veyrières A, Leroy Y, Fournet B (1984)J Biol Chem 259:13385–90.

    Google Scholar 

  26. Sadler JE, Rearick JI, Paulson JC, Hill RL (1979)J Biol Chem 254:4434–43.

    Google Scholar 

  27. Rearick JI, Sadler JE, Paulson JC, Hill RL (1979)J Biol Chem 254:4444–51.

    Google Scholar 

  28. Joziasse DH, Bergh MLE, Ter Hart H, Koppen PL, Hooghwinkel GJM, van den Eijnden DH (1985)J Biol Chem 260:4941–51.

    Google Scholar 

  29. Bergh MLE, Hooghwinkel GJM, van den Eijnden DH (1981)Biochim Biophys Acta 660:161–9.

    Google Scholar 

  30. Gillespie W, Kelm S, Paulson JC (1992)J Biol Chem 267:21004–10.

    Google Scholar 

  31. Paulsen H, van Deessen U (1988)Carbohydr Res 175:283–93.

    Google Scholar 

  32. Paulsen H, Rutz V, Brockhausen I (1992)Liebigs Ann Chem 747–58.

  33. Ratcliffe RM, Baker DA, Lemieux RU (1981)Carbohydr Res 93:35–41.

    Google Scholar 

  34. Paulsen H, Hölk JP (1982)Carbohydr Res 109:89–107.

    Google Scholar 

  35. Paulsen H, Adermann K (1989)Liebigs Ann Chem 751–80.

  36. Rana SS, Barlow JJ, Matta KL (1981)Carbohydr Res 96:231–9.

    Google Scholar 

  37. Piscorz CF, Abbas SA, Matta KL (1984)Carbohydr Res 126:115–24.

    Google Scholar 

  38. Piscorz CF, Abbas SA, Matta KL (1984)Carbohydr Res 131:257–63.

    Google Scholar 

  39. Matta KL, Barlow JJ (1976)Carbohydr Res 48:65–71.

    Google Scholar 

  40. Flowers HM, Shapiro D (1965)J Org Chem 30:2041–3.

    Google Scholar 

  41. Abbas SA, Barlow JJ, Matta KL (1983)Carbohydr Res 112:201–11.

    Google Scholar 

  42. Paulsen H, Rutz V, Brockhausen I (1992)Liebigs Ann Chem 735–45.

  43. Brockhausen I, Möller G, Pollex-Krüger A, Rutz V, Paulsen H, Matta KL (1992)Biochem Cell Biol 70:99–108.

    Google Scholar 

  44. Brockhausen I, Carver JP, Schachter H (1988)Biochem Cell Biol 66:1134–51.

    Google Scholar 

  45. Brockhausen I, Grey AA, Pang H, Schachter H, Carver JP (1988)Glycoconjugate J 5:419–48.

    Google Scholar 

  46. Ciucanu I, Kerek F (1984)Carbohydr Res 131:209–17.

    Google Scholar 

  47. Bradford M (1976)Anal Biochem 72:248.

    Google Scholar 

  48. Oistler JJ, Jourdian GW (1973)J Biol Chem 248:6772–80.

    Google Scholar 

  49. Pollex-Krüger A, Meyer B, Stuike-Prill R, Sinnwell V, Matta KL, Brockhaussen I (1993)Glycoconjugate J 10:in press.

  50. Bierhuizen MFA, Mattei M-G, Fukuda M. (1993)Genes Development, in press.

  51. Hindsgaul O, Kaur KJ, Srivastava G, Glasczyk-Thurin M, Crawley SC, Heerze LD, Palcic MM (1991)J Biol Chem 266:17858–62.

    Google Scholar 

  52. Gu J, Nishikawa A, Fujii S, Gasa S, Taniguchi N (1992)J Biol Chem 267:2994–9.

    Google Scholar 

  53. Sekine M, Hashimoto Y, Inagaki F, Yamakawa T, Suzuki A (1990)J. Biochem (Tokyo) 108:103–8.

    Google Scholar 

  54. Basu M, Basu S (1984)J Biol Chem 259:12557–62.

    Google Scholar 

  55. Koenderman AHL, Koppen PL, van den Eijnden DH (1987)Eur J Biochem 166:199–208.

    Google Scholar 

  56. Leppänen A, Penttilä L, Niemelä R, Helin J, Seppo A, Lusa S, Renkonen O (1991)Biochemistry 30:9287–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Enzymes: UDP-GlcNAc:Galβ1-3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase,O-glycan core 2 β6-GlcNAc-transferase, EC 2.4.1.102; CMP-sialic acid: Galβ1-3GalNAc-R α3-sialyltransferase,O-glycan α3-sialic acid-transferase, EC 2.4.99.4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhns, W., Rutz, V., Paulsen, H. et al. ProcessingO-glycan core 1, Galβ1-3GalNAcα-R. Specificities of core 2, UDP-GlcNAc: Galβ1-3GalNAc-R(GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase and CMP-sialic acid:Galβ1-3GalNAc-R α3-sialyltransferase. Glycoconjugate J 10, 381–394 (1993). https://doi.org/10.1007/BF00731043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731043

Keywords

Navigation