Journal of Superconductivity

, Volume 7, Issue 1, pp 165–168 | Cite as

Magnetic penetration depth of Tl2Ba2CuO6+δ:T c ∼σ0 in the overdoped region

  • Ch. Niedermayer
  • C. Bernhard
  • U. Binninger
  • H. Glückler
  • J. L. Tallon
  • E. J. Ansaldo
  • J. I. Budnick
V. Carrier Concentration; Overdoped Region

Abstract

We report transverse-field muon-spin-rotation experiments carried out on Tl2Ba2CuO6+δ. This system spans the whole overdoped regime, andT c is reduced by excess oxygen doping, which increases the normal-state carrier concentration. In the heavily overdoped regimeσ(0) is found to scale linearly with the superconducting critical temperatureT c , similar to the behavior previously observed for other cuprates in the underdoped regime. However, for the overdoped region one has to explain the reduction ofσ0, thus the increase of the magnetic penetration depthλ, in spite of an increasing normal-state carrier concentration. We discuss some possible explanations for this behavior.

Key words

Muon spin rotation magnetic penetration depth Tl2Ba2CuO6+δ overdoped pair breaking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. J. Uemuraet al., Phys. Rev. Lett. 62, 2317 (1989).Google Scholar
  2. 2.
    B. Pümpinet al., Phys. Rev. B 42, 8019 (1990).Google Scholar
  3. 3.
    H. Zhang and H. Sato,Phys. Rev. Lett. 70, 1697 (1993).Google Scholar
  4. 4.
    Y. Kuboet al., Physica C 162–164, 991 (1989).Google Scholar
  5. 5.
    S. D. Obertelliet al., Phys. Rev. B 46, 14928 (1992).Google Scholar
  6. 6.
    Y. Kitaokaet al., Physica C 179, 107 (1991).Google Scholar
  7. 7.
    K. Levinet al., J. Phys. Chem. Solids 52, 1337 (1991).Google Scholar
  8. 8.
    R. S. Liuet al., Physica C 198, 203 (1992).Google Scholar
  9. 9.
    Ch. Niedermayeret al., Phys. Rev. B 40, 11386 (1989).Google Scholar
  10. 10.
    Y. J. Uemuraet al., submitted toNature (London).Google Scholar
  11. 11.
    J. W. Loramet al., submitted toPhys. Rev. Lett. Google Scholar
  12. 12.
    J. W. Loramet al., to be published.Google Scholar
  13. 13.
    D. Mandruset al., Phys. Rev. Lett. 70, 2629 (1993).Google Scholar
  14. 14.
    T. Machiet al., Physica C 173, 32 (1991).Google Scholar
  15. 15.
    D. Mandruset al., Nature (London) 351, 460 (1991).Google Scholar
  16. 16.
    F. Slaskeyet al., Phys. Rev. B 43, 3764 (1991).Google Scholar
  17. 17.
    R. G. Buckleyet al., to be published.Google Scholar
  18. 18.
    M. Tinkham,Introduction to Superconductivity McGraw-Hill, New York, 1975, pp. 258–273.Google Scholar
  19. 19.
    N. Nagaosa and P. A. Lee,Phys. Rev. B 45, 966 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Ch. Niedermayer
    • 1
  • C. Bernhard
    • 1
  • U. Binninger
    • 1
  • H. Glückler
    • 1
  • J. L. Tallon
    • 2
  • E. J. Ansaldo
    • 3
  • J. I. Budnick
    • 4
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzGermany
  2. 2.The New Zealand Institute for Industrial Research and DevelopmentLower HuttNew Zealand
  3. 3.TRIUMF and University of SaskatchewanSaskatoonCanada
  4. 4.University of ConnecticutStorrs

Personalised recommendations