Foundations of Physics

, Volume 12, Issue 5, pp 441–465 | Cite as

The spin of the electron according to stochastic electrodynamics

  • L. de la Peña
  • A. Jáuregui
Article

Abstract

By making use of the method of moments we study some aspects of the statistical behavior of the nonrelativistic harmonic oscillator according to stochastic electrodynamics. We show that the random rotations induced on the particle by the zero-point field account for the magnitude of the spin of the electron, the result differing from the correct one(3/4)h 2 by a factor of2. Assuming that the measurement of a spin projection may be effectively taken into account by considering the action of only the subensemble of the field with the corresponding circular polarization, the calculated value of the spin projection comes out to be the correct one within a factor of order unity. The radiative corrections give rise to both the Lamb shift and the anomalous magnetic moment of the electron, the latter being evaluated to within a factor of2. The magnetic and gyromagnetic properties of the electron come out to be in agreement with quantum mechanics. Interference effects are shown to occur when evaluating the average value of the square of the angular momentum.

Keywords

Angular Momentum Quantum Mechanic Harmonic Oscillator Interference Effect Circular Polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Young,Am. J. Phys. 44, 581 (1976).Google Scholar
  2. 2.
    A. M. Cetto and L. de la Peña,Rev. Mex. Fis. 20, 191 (1971).Google Scholar
  3. 3.
    K. Huang,Am. J. Phys. 20, 479 (1952).Google Scholar
  4. 4.
    H. C. Corben,Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968).Google Scholar
  5. 5.
    T. W. Marshall,Proc. Roy. Soc. A 276, 475 (1963).Google Scholar
  6. 6.
    T. H. Boyer,Phys. Rev. D 11, 790 (1975), and references therein.Google Scholar
  7. 7.
    T. H. Boyer, inFoundation of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, 1980).Google Scholar
  8. 8.
    P. Braffort, M. Surdin, and A. Taroni,Compt. Rend. 261, 4339 (1965).Google Scholar
  9. 9.
    E. Santos,Nuovo Cimento 19B, 57 (1974);22B, 201 (1974).Google Scholar
  10. 10.
    E. Santos,J. Math. Phys. 15, 1954 (1974).Google Scholar
  11. 11.
    P. Claverie and S. Diner, inLocalization and Delocalization in Quantum Chemistry, O. Chalvet, R. Daudel, S. Diner, and J. P. Malrieu, eds. (Reidel, Dordrecht, 1976), Vol. II.Google Scholar
  12. 12.
    P. Claverie and S. Diner,Ann. Fond. L. de Broglie 1, 73 (1976).Google Scholar
  13. 13.
    P. Claverie and S. Diner,Int. J. Quantum Chem. 12(Suppl. 1), 41 (1977).Google Scholar
  14. 14.
    L. de la Peña and A. M. Cetto,Phys. Lett. 47A, 183 (1974);Rev. Mex. Fis. 25, 1 (1976).Google Scholar
  15. 15.
    L. de la Peña and A. M. Cetto,J. Math. Phys. 18, 1612 (1977).Google Scholar
  16. 16.
    L. de la Peña and A. M. Cetto,Found. Phys. 8, 191 (1978).Google Scholar
  17. 17.
    L. de la Peña and A. M. Cetto,Int. J. Quantum Chem. 12 (Suppl. 1), 23 (1977).Google Scholar
  18. 18.
    L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979).Google Scholar
  19. 19.
    T. H. Boyer,Phys. Rev. 174, 1631 (1968); J. Mitchell, B. W. Ninham, and P. Richmond,Am. J. Phys. 40, 674 (1972).Google Scholar
  20. 20.
    M. Surdin,Ann. Inst. H. Poincaré 15, 203 (1971).Google Scholar
  21. 21.
    T. H. Boyer,Phys. Rev. 182, 1374 (1969);186, 1304 (1969).Google Scholar
  22. 22.
    O. Theimer,Phys. Rev. 40, 1597 (1971).Google Scholar
  23. 23.
    J. L. Jiménez, L. de la Peña, and T. A. Brody,Am. J. Phys. 48, 840 (1980).Google Scholar
  24. 24.
    T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980); P. Claverie, L. de la Peña, and S. Diner, to be published.Google Scholar
  25. 25.
    A. M. Cetto and L. de la Peña,Ann. Fond. L. de Broglie 3, 15 (1978).Google Scholar
  26. 26.
    T. W. Marshall,Proc. Camb. Phil. Soc. 61, 537 (1965).Google Scholar
  27. 27.
    P. Braffort and A. Taroni,Compt. Rend. 264B, 1437 (1967).Google Scholar
  28. 28.
    L. de la Peña,Am. J. Phys. 48, 1080 (1980).Google Scholar
  29. 29.
    L. Landau and E. Lifshitz,The Classical Theory of Fields (Addison-Wesley, Cambridge, 1951), Section 9.9.Google Scholar
  30. 30.
    T. A. Welton,Phys. Rev. 74, 1157 (1948); V. F. Weisskopf,Rev. Mod. Phys. 21, 305 (1949).Google Scholar
  31. 31.
    M. Lax,Rev. Mod. Phys. 38, 541 (1966).Google Scholar
  32. 32.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford).Google Scholar
  33. 33.
    J. J. Sakurai,Advanced Quantum Mechanics (Addison-Wesley, Reading, Mass., 1967), Section 2.8.Google Scholar
  34. 34.
    H. Grotsch and E. Kazes,Am. J. Phys. 45, 618 (1977).Google Scholar
  35. 35.
    T. H. Boyer,Phys. Rev. A 21, 66 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • L. de la Peña
    • 1
  • A. Jáuregui
    • 1
  1. 1.Instituto de FisicaUniversidad Nacional Autónoma de México, México, D.F.México

Personalised recommendations