Chemistry and Technology of Fuels and Oils

, Volume 5, Issue 9, pp 644–647 | Cite as

Continuous process lithium grease production

  • I. G. Fuks
  • V. V. Vainsntok
  • É. A. Smiotanko
  • Yu. N. Shekhter
  • G. G. Vinner
  • S. Yu. Omarov
  • B. N. Kartinin
Article
  • 60 Downloads

Conclusions

  1. 1.

    It has been shown that grease made on a continuous process plant with a lithium stearate content of 8% by weight (optimum water content of the initial dispersion and free alkali content of 0.04% NaOH) can meet the GOST standard requirements for grease TsIATIM-201 containing 12% soap.

     
  2. 2.

    The significant influence of free alkali content on the structure and properties of lithium greases is confirmed. The major grease properties are highly dependent on excess alkali content. The optimum excess alkali content for lithium greases is 0.04 to 0.05% NaOH.

     
  3. 3.

    The beneficial effect of water specially introduced into the initial dispersion on the structure and properties of greases was established. When the water content of the dispersion is increased to 20% by weight there is an improvement in grease properties associated with improved thickening power of the lithium soap.

     
  4. 4.

    Increase in soap content (from 6 to 13%) of greases produced on the continuous process plant with different water contents of initial feed corresponds to the previously established changes in rheological and physicochemical properties as function of the dispersed phase content.

     

Keywords

Lithium Stearate Grease Optimum Water Standard Requirement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Boner, Manufacture and Application of Greases [Russian translation] Gostoptekhizdat (1959).Google Scholar
  2. 2.
    F. D. Bollo and G. A. Woods, Recent Achievements of Petroleum Chemistry and Petroleum Refining [Russian translation] Gostoptekhizdat (1965), p. 234.Google Scholar
  3. 3.
    R. M. Nikolaeva, E. M. Oparina, and G. A. Tropkina, Khim. i Tekhnol. Topliv i Masel, No. 1 (1960).Google Scholar
  4. 4.
    G. Keil, H. Eckard, and W. Gey, Freiberger Forschungen,A, No. 196 (1961).Google Scholar
  5. 5.
    E. Vamos, Magyar Kern. Lapja,19, No. 3 (1964).Google Scholar
  6. 6.
    P. I. Baker and N. G. Joyner, NLGI. Spokesman,17, No. 3 (1953).Google Scholar
  7. 7.
    Yu. N. Shekhter, V. V. Vainshtok, I. G. Fuks, É. A. Smiotanko, and Yu. L. Ishchuk, Khim. i Tekhnol. Topliv i Masel, No. 5 (1969).Google Scholar
  8. 8.
    I. P. Lukashevich, The Theory and Practice of Grease Manufacture and Production [in Russian], Gostoptekhizdat (1939), p. 118.Google Scholar
  9. 9.
    G. G. Shchegolev and A. A. Trapeznikov, Kolloid. Zhurn.28, No. 2 (1966).Google Scholar
  10. 10.
    V. V. Sinitsyn, E. V. Aleeva, and B. N. Kartinin, Kolloid. Zhurn.24, No. 1 (1962); V. V. Sinitsyn, K. N. Klimov, and E. V. Aleeva, ibid.,22, No. 4 (1960).Google Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • I. G. Fuks
    • 1
    • 2
  • V. V. Vainsntok
    • 1
    • 2
  • É. A. Smiotanko
    • 1
    • 2
  • Yu. N. Shekhter
    • 1
    • 2
  • G. G. Vinner
    • 1
    • 2
  • S. Yu. Omarov
    • 1
    • 2
  • B. N. Kartinin
    • 1
    • 2
  1. 1.I. M. Gubkin Moscow Institute of the Petrochemical and gas Industry (MINKh i GP)USSR
  2. 2.Moscow Experimental Plant of the All-Union Scientific-Research Institute of Petroleum and gas (VNII NP)USSR

Personalised recommendations