Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. V. Panasyuk (ed.), Fracture Mechanics and Strength of Materials [in Russian], a Handbook in Four Volumes, Vol. 4, Naukova Dumka, Kiev (1990).

    Google Scholar 

  2. P. M. Vitvitskij, V. V. Panasyuk, and S. Ya. Yarema, “Plastic deformation around crack and fracture criteria,” Eng. Fract. Mech.,7, No. 2, 305–319 (1975).

    Google Scholar 

  3. L. R. Botvina, Fracture Kinetics of Structural Materials [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. T. Yokobori and K. Sato, “The effect of frequency on fatigue crack propagation rate and striation spacing in 2024-T3 aluminum alloy and SM-50 steel,” Eng. Fract. Mech.,8, No. 1, 81–88 (1976).

    Google Scholar 

  5. K. Ando and N. Ogura, “Transition of fatigue crack from stable to unstable propagation and fatigue fracture toughness of 3% Si iron,” J. Soc. Mater. Sci. Jpn.,25, No. 268 (1976).

    Google Scholar 

  6. Yu. V. Saprykin, S. D. Akimov, and S. D. Burda, “Structural and fractographic micromechanics of fracture of structural steels, under different loading conditions,” Fiz. Khim. Mekh. Mater., No. 6, 3–13 (1988).

    Google Scholar 

  7. G. T. Hahn, R. C. Hoagland, and A. R. Rosenfield, “Local yielding attending fatigue crack growth,” Met. Trans.,3, No. 5, 1183–1202 (1972).

    Google Scholar 

  8. C. Bathias, “Plastic zone formation and fatigue crack growth,” in: Adv. Res. Strength Fract. Mater. 4th Int. Conf. Fract., Waterloo 1977, New York (1978).

  9. K. M. Lat and S. B. L. Garg, “Plastic zones in fatigue,” Eng. Fract. Mech.,13, No. 2, 407–412 (1980).

    Google Scholar 

  10. S. Kocanda, Fatigue Cracking of Metals [Russian translation], Metallurgiya, Moscow (1990).

    Google Scholar 

  11. B. G. Kudryashov and I. A. Skotnikov, “Optimization of the shape of specimens with a sharp chevron notch for determining KIC in off-center tension,” Fiz. Khim. Mekh. Mater., No. 1, 110–112 (1988).

    Google Scholar 

  12. I. A. Skotnikov and B. G. Kudryashov, “A method of determining the rate of fatigue crack growth in plane strain conditions,” Zavod. Lab., No. 9, 78–80 (1990).

    Google Scholar 

  13. D. A. Molodov and S. V. Safronov, “Effect of the stress ratio on the rate of failure and formation of the surface of fatigue fractures,” Probl. Prochn., No. 5, 56–61(1990).

    Google Scholar 

  14. D. A. Molodov and S. V. Safronov, “Effect of the nature of loading on the distribution of plastic strain below the surface of fractures of a structural steel,” Fiz. Khim. Mekh. Mater., No. 6, 13–16 (1988).

    Google Scholar 

  15. L. R. Botvina, G. V. Kevtsov, and Yu. S. Gladilov, “Zones of plastic strain under the surface of impact failure of 45 steel,” Probl. Prochn., No. 20, 55–59 (1982).

    Google Scholar 

Download references

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, No. 5, pp. 51–56, September–October, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronov, S.V., Molodov, D.A. & Sakulin, B.M. Kinetics of zones of plastic deformation in fatigue failure. Mater Sci 28, 436–441 (1992). https://doi.org/10.1007/BF00729032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00729032

Keywords

Navigation