Skip to main content
Log in

Measurement of the hydrogen brittleness of structural materials

  • Phenomonology and Mechanism of Hydrogen Embrittlement of Metals and Alloys
  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Hydrogen Energy, Part A, B, Plenum Press, New York (1975).

  2. A. N. Podgornyi and I. L. Varshavskii, Hydrogen — Fuel of the Future [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  3. G. V. Karpenko, V. I. Tkachev, and A. K. Lityin, Alleviating the Deformation and Failure of Metals in the Presence of Hydrogen, Summaries of Reports at the Sixth All-Union Conference on Materials Science on Materials Science [in Russian], (1974), pp. 80–82.

  4. O. Reynolds, “On the effect of acid on the interior of iron wire,” Proc. Liter. Philos. Soc. Manchester,13, 93–96 (1874).

    Google Scholar 

  5. V. Srikrishnan and P. J. Ficalora, “Selective adsorption and hydrogen embrittlement,” Met. Trans.,A7, 1669–1675 (1976).

    Google Scholar 

  6. A. K. Litvin and V. G. Starchak, “Distribution of electrolytic hydrogen in the surface layer of steel,” in: Hydrogen in Metals [in Russian], Uch. Zap. Permskogo Univ., No. 194, 117–130 (1968).

    Google Scholar 

  7. M. M. Shved, “Methodological approach to the study of the effect of hydrogen on metals,” Fiz.-Khim. Mekh. Mater., No. 5, 71–75 (1977).

    Google Scholar 

  8. H. R. Gray, Testing for Hydrogen Environment Embrittlement: Experimental Variables, ASTM STP 543 (1974), pp. 133–151.

    Google Scholar 

  9. T. Toh and W. M. Baldwin, “Ductility of steel with varying concentrations of hydrogen,” in: Stress Corrosion Cracking and Embrittlement, John Wiley and Sons, New York (1956), pp. 176–181.

    Google Scholar 

  10. L. A. Plavich, N. P. Zhuk, and M. L. Bernshtein, “Effect of method of toughening steel on its susceptibility to hydrogen embrittlement,” Fiz.-Khim. Mekh. Mater., No. 3, 30–34 (1970).

    Google Scholar 

  11. P. V. Sklyuev, L. I. Kvater, and V. E. Shapiro, “Effect of hydrogen on mechanical properties of steel,” Stal', No. 10, 909–915 (1956).

    Google Scholar 

  12. V. Ya. Dubovoi and V. A. Romanov, “Effect of hydrogen on mechanical properties of steel,” Stal', No. 8, 727–731 (1947).

    Google Scholar 

  13. B. A. Kolachev, V. A. Livanov, and A. A. Bukhanova, Mechanical Properties of Titanium and Its Alloys [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  14. A. V. Mal'kov and B. A. Kolachev, “Measurement of effect of hydrogen on the service properties of titanium alloys,” Probl. Prochn., No. 1, 65–72 (1979).

    Google Scholar 

  15. A. R. Troiano, “Delayed failure of high-strength steels,” Corrosion,15, No. 4, 207t-212t (1959).

    Google Scholar 

  16. E. J. Jankowsky, “Notched C-ring test,” in: Hydrogen Embrittlement Testing, ASTM STP 543 (1974), pp. 51–57.

    Google Scholar 

  17. R. C. Movich, “Notched bar-bending test,” in: Hydrogen Embrittlement Testing, ASTM STP 543 (1974), pp. 64–73.

    Google Scholar 

  18. W. H. Hyter, “Stressed O-ring test,” in: Hydrogen Embrittlement Testing, ASTM STP 543 (1974), pp. 58–63.

    Google Scholar 

  19. S. M. Beloglazov and M. I. Polukarov, “Hydrogen brittleness of steel during cathodic polarization in sulfuric acid,” Zh. Prikl. Khim.,33, No. 2, 389–397 (1960).

    Google Scholar 

  20. A. N. Romaniv and G. V. Karpenko, “Temperature dependence of low-cycle fatigue of steel precharged with hydrogen,” Fiz.-Khim. Mekh. Mater., No. 4, 98–100 (1973).

    Google Scholar 

  21. V. I. Tkachev, R. I. Kripyakevich, and A. B. Kuslitskii, “ Effect of hydrogen precharging and corrosion on low-cycle fatigue of steel,” Fiz.-Khim. Mekh. Mater., No. 2, 192–194 (1966).

    Google Scholar 

  22. M. A. Figel'man and A. V. Shreider, “Investigation of hydrogen brittleness of steel,” Zavod. Lab., No. 5, 586–588 (1956).

    Google Scholar 

  23. V. T. Stepurenko, A. K. Litvin, and A. I. Soshko, “Testing of wire specimens in a production test by flexing with simultaneous hydrogen charging,” in: Effect of Environment on Steel Properties [in Russian], Kiev (1961), pp. 84–87.

  24. P. W. Bridgman, “Penetration of steel by hydrogen at very high pressures,” Rec. Trav. Chim. PB,42, 568–574 (1923).

    Google Scholar 

  25. G. G. Hancock and H. H. Johnson, “Hydrogen, oxygen, and subcritical crack growth in high-strength steel,” Trans. Met. Soc. AIME,236, 513–516 (1966).

    Google Scholar 

  26. W. Hofmann and W. Rauls, “Ductility of steel under the influence of external high-pressure hydrogen,” Weld. J.,44, 225s-230s (1965).

    Google Scholar 

  27. W. T. Chandler and R. J. Walter, “Testing to determine the effect of high-pressure hydrogen environments on the mechanical properties of metals,” in: Hydrogen Embrittlement Testing, ASTM STP 543 (1974), pp. 170–197.

    Google Scholar 

  28. D. P. Williams and H. G. Nelson, “Embrittlement of 4130 steel by low-pressure gaseous hydrogen,” Met. Trans.,1, No. 1, 63–68 (1970).

    Google Scholar 

  29. J.-P. Fidelle, C. Roux, and M. Rapin, “Embrittlement of high-strength steel by hydrogen and deuterium under pressure. Mechanism of hydrogen embrittlement of steel,” Mem. Sci. Rev. Met.,66, No. 11, 843–844 (1969).

    Google Scholar 

  30. A. N. Romaniv, V. I. Tkachev, and R. I. Kripyakevich, “Low-cycle fatigue of 2Kh13 steel in hydrogen gas,” Fiz.-Khim. Mekh. Mater., No. 1, 102–104 (1972).

    Google Scholar 

  31. A. N. Romaniv, V. I. Tkachev, and G. V. Karpenko, “Low-cycle fatigue of iron and steels in hydrogen gas,” Fiz.-Khim. Mekh. Mater., No. 6, 15–21 (1975).

    Google Scholar 

  32. J. A. Harris and M. C. Van Wanderham, Properties of Materials in High-Pressure Hydrogen at Cryogenic, Room, and Elevated Temperatures, Tech. Rep. PWA-FR-4566, NASA (June, 1971).

  33. H. H. Johnson and A. M. Willner, “Moisture and stable crack growth in a high-strength steel,” Appl. Mater. Res.,4, 34–40 (1965).

    Google Scholar 

  34. H. H. Johnson and P. C. Paris, “Subcritical flaw growth,” Eng. Fract. Mech.,1, No. 1, 3–45 (1968).

    Google Scholar 

  35. I. S. Yablonskii, “Measurement of hydrogen brittleness of steel from failure viscosity,” Zavod. Lab., No. 10, 1244–1246 (1976).

    Google Scholar 

  36. D. A. Meyn, “Effect of hydrogen on fracture and inert-environment sustained load cracking resistance ofα-β titanium alloys,” Met. Trans.,5, No. 11, 2405–2414 (1974).

    Google Scholar 

  37. B. A. Kolachev, A. V. Mal'kov, and V. I. Sedov, “Use of linear failure mechanics in the study of the hydrogen brittleness of titanium alloys,” Fiz.-Khim. Mekh. Mater., No. 6, 7–12 (1975).

    Google Scholar 

  38. W. T. Chandler and R. J. Walter, “Hydrogen environment embrittlement of metals and its control,” Hydrogen Energy, Pt. B, 1057–1078 (1975).

  39. V. S. Fedchenko, I. I. Vasilenko, and I. E. Gaidarenko, “Dependence of steel strength on temperature and pressure of the gaseous environment,” Fiz.-Khim. Mekh. Mater., No. 3, 105–107 (1972).

    Google Scholar 

  40. V. S. Fedchenko, A. I. Radkevich, and L. M. Karvatskii, “Strength of steel in ionized gases,” Fiz.-Khim. Mekh. Mater., No. 4, 96–100 (1976).

    Google Scholar 

  41. V. V. Panasyuk and S. E. Kovchik, “Effect of a surface-active medium on the surface energy of a brittle solid,” Dokl. Akad. Nauk SSSR,146, No. 1, 82–85 (1962).

    Google Scholar 

  42. V. A. Mal'kov and B. A. Kolachev, “Effect of hydrogen on the failure energy of titanium alloys,” Fiz. Khim. Mekh. Mater.,42, No. 2, 364–371 (1976).

    Google Scholar 

  43. D. N. Williams, “Effects of hydrogen on titanium alloys on subcritical crack growth under sustained load,” Mater. Sci. Eng.,24, No. 11, 53–63 (1976).

    Google Scholar 

  44. D. P. Dautovich and S. Floreen, “The stress intensities for slow crack growth in steels containing hydrogen,” Met. Trans.,4, No. 11, 2627–2630 (1973).

    Google Scholar 

  45. B. F. Brown, “The contributions of physical metallurgy and fracture mechanics to containing the problem of stress corrosion cracking,” Phil. Trans. Roy. Soc.,A282, 235–245 (1976).

    Google Scholar 

  46. B. F. Brown, “The application of fracture mechanics to stress corrosion cracking,” Met. Mater.,2, No. 2, 171–183 (1968).

    Google Scholar 

  47. S. M. Widerhorn, “Moisture assisted crack growth in ceramics,” Int. J. Fract.,4, No. 2, 171–177 (1968).

    Google Scholar 

  48. R. P. Wei, S. R. Novak, and D. P. Williams, “Some important considerations in the development of stress corrosion cracking test methods,” Mater. Res. Stand.,12, 25–30 (1972).

    Google Scholar 

  49. J. D. Landes and R. P. Wei, “The kinetics of subcritical crack growth under sustained loading,” Int. J. Fract.,9, No. 3, 277–293 (1973).

    Google Scholar 

  50. O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, “Kinetic effects in the delayed failure of high-strength Steels,” Fiz.-Khim. Mekh. Mater., No. 4, 9–24 (1976).

    Google Scholar 

  51. D. P. Williams, “A new criterion for failure of materials by environment-induced cracking,” Int. J. Fract.,9, No. 1, 63–74 (1973).

    Google Scholar 

  52. D. P. Williams and H. G. Nelson, “Gaseous hydrogen induced cracking of Ti-5Al-2.5Sn,” Met. Trans.,3, No. 8, 2107–2113 (1972).

    Google Scholar 

  53. S. J. Hudak and R. P. Wei, “Hydrogen enhanced crack growth in 18Ni maraging steels,” Met. Trans.,A7, No. 2, 235–241 (1976).

    Google Scholar 

  54. P. S. Pao and R. P. Wei, “Hydrogen assisted crack growth in 18Ni(300) maraging steels,” Scr. Met.,11, No. 6, 515–520 (1977).

    Google Scholar 

  55. R. P. Gagloff and R. P. Wei, “Gaseous hydrogen embrittlement of high-strength steels,” Met. Trans.,A8, No. 7, 1043–1053 (1977).

    Google Scholar 

  56. J. D. Frandsen and H. L. Marcus, “Envionmentally assisted fatigue crack propagation in steel,” Met. Trans.,A8, No. 2, 265–272 (1977).

    Google Scholar 

  57. L. M. Bilyi, V. I. Pokhmurskii, M. M. Shved, and V. A. Fedorova, “The role of hydrogen in the kinetics of the fatigue failure of steel U8,” Fiz.-Khim. Mekh. Mater., No. 1, 67–70 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 15, No. 3, pp. 5–17, May–June, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V., Kovchik, S.E. & Smoroda, G.I. Measurement of the hydrogen brittleness of structural materials. Mater Sci 15, 193–202 (1979). https://doi.org/10.1007/BF00728929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728929

Keywords

Navigation