Skip to main content

Astronomical units and constants in the general relativity framework


An attempt is made to analyze the existing system of astronomical constants within the general relativity theory (GRT) framework. The general conclusion is that, to avoid any confusion in the GRT compatible interpretation of units and constants, one should give precisely, with full post-Newtonian accuracy, the expressions of the metric forms describing the astronomical barycentric and geocentric reference systems used, for example, in IERS analysis of observations.

This is a preview of subscription content, access via your institution.


  • Arias, E.F., Charlot, P., Feissel, M., and Lestrade, J.-F.: 1995, ‘The Extragalactic Reference System of the International Earth Rotation Service (ICRS)’,Astron. Astrophys,303, 604.

    Google Scholar 

  • Bergeron, J. (ed.): 1992,Transactions of the IAU 21B, 41.

    Google Scholar 

  • Bizouard, C., Schastok, J., Soffel, M.H., and Souchay, J.: 1993. ‘Étude de la Rotation de la Terre dans le Cadre de la Relativité Générale: Première Approche’, in N. Capitaine (éd.),Systèmes de référence spatio-temporels. Journées 1992, Obs. de Paris, 76.

  • Brumberg, V.A.: 1995, ‘General Relativistic Description of Earth's Rotation in Different Reference Systems’,J. of Geodynamics,20, 181.

    Google Scholar 

  • Brumberg, V.A., Bretagnon, P., and Francou, G.: 1992, ‘Analytical Algorithms of Relativistic Reduction of Astronomical Observations’, in N. Capitaine (éd.),Systèmes de référence spatio-temporels. Journées 1991, Obs. de Paris, 141.

  • Brumberg, V.A., Bretagnon, P., and Francou, G.: 1993, ‘Analytical Relativistic Transformations Between Reference Systems’,Astron. Astrophys. 275, 651.

    Google Scholar 

  • Damour, T. and Vokrouhlicky, D.: 1995, ‘Conservation Laws for Systems of Extended Bodies in the First Post-Newtonian Approximation’,Phys. Rev. D, (in press).

  • Damour, T., Soffel, M., and Xu, Ch.: 1991, ‘General-Relativistic Celestial Mechanics. I. Method and Definition of Reference Systems’,Phys. Rev. D 43, 3273.

    Google Scholar 

  • Damour, T, Soffel, M., and Xu, Ch.: 1992, ‘General-Relativistic Celestial Mechanics. II. Translational Equations of Motion’,Phys. Rev. D 45, 1017.

    Google Scholar 

  • Damour, T, Soffel, M., and Xu, Ch.: 1993 ‘General-Relativistic Celestial Mechanics. III. Rotational Equations of Motion’,Phys. Rev. D 47, 3124.

    Google Scholar 

  • Damour, T., Soffel, M., and Xu, Ch.: 1994, ‘General-Relativistic Celestial Mechanics. IV Satellite Equations of Motion’,Phys. Rev. D 49, 618.

    Google Scholar 

  • De Boer, J.: 1995, ‘On the History of Quantity Calculus and the International System’,Metrologia 31, 405.

    Google Scholar 

  • Fock, VA.: 1955,The Theory of Space, Time and Gravitation, State Tech. Publ., Moscow (in Russian).

  • Fukushima, T.: 1995, ‘Time Ephemeris’,Astron. Astrophys. 294, 895.

    Google Scholar 

  • Fukushima, T., Fujimoto, M.-K., Kinoshita, H., and Aoki, S.: 1986 ‘A System of Astronomical Constants in the Relativistic Framework’Celes. Mech. 38, 215.

    Google Scholar 

  • Guinot, B.: 1995, ‘Scales of Time’,Metrologia 31, 431.

    Google Scholar 

  • Hellings, R.W.: 1986, ‘Relativistic Effects in Astronomical Timing Measurements’,Astron. J. 91, 650.

    Google Scholar 

  • Klioner, S.A.: 1993, ‘On the Hierarchy of Relativistic Kinematically Nonrotating Reference Systems’,Astron. Astrophys. 279, 273.

    Google Scholar 

  • Klioner, S.A. and Voinov, A.V.: 1993, ‘Relativistic Theory of Astronomical Reference Systems in Closed Form’,Phys. Rev. D 48, 1451.

    Google Scholar 

  • Kopeikin, S.M.: 1991, ‘Relativistic Reference Systems in the Solar System’, in Sazhin M.V. (ed.),Itogi Nauki Tekh., Ser. Astron. 41, 87, VINITI, Moscow (in Russian).

    Google Scholar 

  • Krivov, AX: 1995, ‘On the Brumberg-Kopeikin and Damour-Soffel-Xu Approaches in the Relativistic Theory of Reference Systems’,Abstract A28, IAU Symp. No. 172, Paris.

  • McCarthy, D.D.: 1992, ‘IERS Standards (1992)’,IERS Tech. Note 13, Obs. de Paris.

  • Misner, C.W., Thorne, K.S., and Wheeler, J.A.: 1973,Gravitation, Freeman, New-York.

    Google Scholar 

  • Smart, W.M.: 1953,Celestial Mechanics, Longmans, London.

    Google Scholar 

  • Tisserand, F.: 1891,Traité de Mécanique Céleste, Gauthier-Villars, Paris, t. II.

    Google Scholar 

  • Voinov, A.V.: 1988, ‘Motion and Rotation of Celestial Bodies in the Post-Newtonian Approximation’,Celes. Mech. 42, 293.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Institute of Applied Astronomy, St. Petersburg, 197042, Russia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brumberg, V.A., Bretagnon, P. & Guinot, B. Astronomical units and constants in the general relativity framework. Celestial Mech Dyn Astr 64, 231–242 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Key words

  • Astronomical units
  • astronomical constants
  • Earth's rotation
  • reference systems
  • general relativity