Journal of Superconductivity

, Volume 9, Issue 6, pp 615–618 | Cite as

A structural study of chemical stability of (Y1−xCax)(Ba2−xLa x )Cu3O7−δ(x= 0.0, 0.2, and 0.4)

  • H. Rajagopal
  • A. Sequeira
  • R. Ganguly
  • J. V. Yakhmi


Neutron structural studies are made on (Y1−xCax)(Ba2−xLa x )Cu3O7−δ for compositions corresponding to x=0.0, 0.2, and 0.4 in order to evaluate any correlation between the remarkably high chemical stability of the cosubstituted samples (x=0.2 and 0.4) and the structural parameters. It is suggested that the increased chemical stability is caused by a decrease in the puckering of the Cu-O planes with increase inx, causing them to flatten, which leads to a reduction in the internal stresses existing in the perovskite lattice of this technologically important material.

Key words

Y-123 structure chemical stability internal stress puckering of Cu-O planes neutron structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Zhou, S. M. Savoy, J. Zhao, D. R. Riley, Y. T. Zhu, A. Manthiram, and J. T. McDevitt,J. Am. Chem. Soc. 116, 9389 (1994).Google Scholar
  2. 2.
    J. P. Zhou, S. M. Savoy, R. K. Lo, J. Zhao, M. Arendt, Y. T. Zhu, A. Manthiram, and J. T. McDevitt,Appl. Phys. Lett. 66, 2900 (1995).Google Scholar
  3. 3.
    J. P. Zhou, J. S. Zhou, J. B. Goodenough, and J. T. McDevitt,J. Supercond. 8, 651 (1995).Google Scholar
  4. 4.
    J. P. Zhou, D. R. Riley, A. Manthiram, M. Arendt, M. Schmerling, and J. T. McDevitt,Appl. Phys. Lett. 63, 548 (1990).Google Scholar
  5. 5.
    A. Sequeira, H. Rajagopal, and J. V. Yakhmi,Solid State Commun. 65, 991 (1988).Google Scholar
  6. 6.
    J. P. Zhou and J. T. McDevitt,Chem. Mater. 4, 953 (1992).Google Scholar
  7. 7.
    D. Riley and J. T. McDevitt,J. Electroanal. Chem. 295, 373 (1990).Google Scholar
  8. 8.
    J. M. Rosamilla, B. Miller, L. F. Schneemeyer, J. P. Waszczak, and H. M. O'Bryan, Jr.,J. Electrochem. Soc. 134, 1863 (1987).Google Scholar
  9. 9.
    J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claw, and W. K. Kwok,Phys. Rev. B 41, 1863 (1990).Google Scholar
  10. 10.
    I. D. Brown,J. Solid State Chem. 90, 1952 (1991).Google Scholar
  11. 11.
    J. P. Zhou, D. R. Riley, and J. T. McDevitt,Chem. Mater. 5, 361 (1993).Google Scholar
  12. 12.
    J. P. Zhou and J. T. McDevitt,Solid State Commun. 86, 11 (1993).Google Scholar
  13. 13.
    F. Keller-Berest, S. Megtert, G. Colin, P. Monod, and M. Ribault,Physica C 161, 150 (1989).Google Scholar
  14. 14.
    P. R. Slater and C. Greaves,Supercond. Sci. Technol. 5, 205 (1992).Google Scholar
  15. 15.
    D. B. Wiles and R. A. Young,J. Appl. Crystallogr. 14, 149 (1981).Google Scholar
  16. 16.
    W. I. F. David, W. T. A. Harrison, J. M. F. Gunn, O. Moze, A. K. Soper, P. Day, J. D. Jorgensen, D. G. Hinks, M. A. Beno, L. Soderholm, D. W. Capone II, I. K. Schuller, C. U. Segre, K. Zhang, and J. D. Grace,Nature 327, 310 (1987).Google Scholar
  17. 17.
    R. J. Cava, B. Batlogg, K. M. Rabe, E. A. Rietman, P. K. Gallagher, and L. W. Rupp,Physica C 156, 523 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • H. Rajagopal
    • 1
  • A. Sequeira
    • 1
  • R. Ganguly
    • 2
  • J. V. Yakhmi
    • 2
  1. 1.Solid State Physics DivisionBhabha Atomic Research CentreMumbai (Bombay)India
  2. 2.Chemistry DivisionBhabha Atomic Research CentreMumbai (Bombay)India

Personalised recommendations