Foundations of Physics

, Volume 13, Issue 11, pp 1155–1165 | Cite as

Light-cone approach to the quantum space-time description

Article

Abstract

Proofs have been given that the light-cone approximation can be analyzed in terms of the extended quantum-mechanical description of the space-time measurements by the complex numbers. It is then proved that the so established description is able to support both the asymptotical scale-invariant cross sections and the threshold behavior of the high-energy production processes.

Keywords

Production Process Complex Number Threshold Behavior Established Description 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Schrempp and F. Schrempp,Phys. Lett. 55B, 303 (1975).Google Scholar
  2. 2.
    L. Motz,Nuovo Cimento 12B, 239 (1972).Google Scholar
  3. 3.
    V. G. Kadyshevsky,Zh. Eksp. Teor. Fiz. 41, 1885 (1961).Google Scholar
  4. 4.
    M. A. Markov,Zh. Eksp. Teor. Fiz. 51, 878 (1966).Google Scholar
  5. 5.
    R. Ehrlich,Phys. Rev. D13, 50 (1976).Google Scholar
  6. 6.
    D. R. Yennie,Acta Phys. Pol. B7, 897 (1976).Google Scholar
  7. 7.
    S. Weinberg,Trans. N.Y. Acad. Sci. Ser. II,38, 185 (1977).Google Scholar
  8. 8.
    S. D. Drell,Ann. Phys. 4, 75 (1975).Google Scholar
  9. 9.
    R. A. Brandt,Phys. Rev. D4, 444 (1971).Google Scholar
  10. 10.
    R. W. Griffith,Nuovo Cimento 21A, 435 (1974).Google Scholar
  11. 11.
    J. B. Cogut,Phys. Rev. D5, 1152 (1972).Google Scholar
  12. 12.
    N. T. Nieh,Phys. Lett. B38, 100 (1972).Google Scholar
  13. 13.
    D. Brill and J. Wheeler,Rev. Mod. Phys. 29, 465 (1957).Google Scholar
  14. 14.
    Y. S. Vladimirov,Zh. Eksp. Teor. Fiz. 45, 251 (1963).Google Scholar
  15. 15.
    E. Papp,Ann. Phys. 32, 285 (1975).Google Scholar
  16. 16.
    T. K. Gaisser, F. Halzen, and K. Kajantie,Phys. Rev. D12, 1968 (1975).Google Scholar
  17. 17.
    D. Cheng and T. T. Wu,Phys. Rev. 182, 1852 (1969).Google Scholar
  18. 18.
    V. N. Gribov and I. Ya. Pomeranchuk,Phys. Rev. Lett. 8, 343 (1962).Google Scholar
  19. 19.
    D. I. Blokhintsev,Teor. Mat. Fiz. 17, 153 (1973).Google Scholar
  20. 20.
    R. Penrose and M. A. H. MacCallum,Phys. Rep. 6C, 243 (1973).Google Scholar
  21. 21.
    E. Papp, inUncertainty Principle and Foundations of Quantum Mechanics, W. C. Price and S. S. Chissick, eds. (Wiley, London, 1977).Google Scholar
  22. 22.
    A. N. Vall and N. A. Makeev,Yed. Fiz. 27, 558 (1978).Google Scholar
  23. 23.
    A. J. Kàlnay and B. P. Toledo,Nuovo Cimento 48, 997 (1967).Google Scholar
  24. 24.
    E. Papp,Int. J. Theor. Phys. 9, 101 (1974).Google Scholar
  25. 25.
    R. Lacroix,Can. J. Phys. 56, 109 (1978).Google Scholar
  26. 26.
    E. Papp,Lett. Nuovo Cimento 15, 512 (1976).Google Scholar
  27. 27.
    R. A. Brandt,Phys. Rev. D1, 2808 (1970).Google Scholar
  28. 28.
    R. A. Brandt and G. Preparata, Report at the Coral Gables Conference, 1971.Google Scholar
  29. 29.
    F. T. Smith,Phys. Rev. 118, 348 (1960).Google Scholar
  30. 30.
    C. Schmid,Phys. Rev. Lett. 20, 628, 689 (1968).Google Scholar
  31. 31.
    G. Barton,Introduction to Dispersion Techniques in Quantum Field Theory (Benjamin, New York, 1965).Google Scholar
  32. 32.
    M. Froissart,Phys. Rev. 123, 1053 (1961).Google Scholar
  33. 33.
    R. J. Crewther, Lecture given at the Cargèse Summer Institute, 1975.Google Scholar
  34. 34.
    A. March,Z. Phys. 117, 413 (1941);108, 128 (1937).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • E. Papp
    • 1
  1. 1.Stadt Allendorf 1West Germany

Personalised recommendations