Advertisement

Journal of Superconductivity

, Volume 9, Issue 3, pp 299–305 | Cite as

The spin susceptibility of singlet correlated oxygen band in La2−xSr x CuO4

  • M. V. Eremin
  • E. Sigmund
  • S. G. Solovjanov
  • S. V. Varlamov
Article

Abstract

We have shown that the unconventional temperature dependence of the static susceptibilityϰ(T) of the perovskite high-Tc superconductors above the superconducting transition temperatureTc can be explained in terms of two relevant band models containing the singlet-correlated oxygen band and the copper character band. The usual copper-oxygen Hamiltonian containing hopping and Coulomb repulsion terms has been reduced to an effective Hubbard-liket-t′-t″-Ueff model to describe the low-energy properties. The unusual behaviour of the susceptibility is due to thermally activated oxygen holes coming into the hybridization singularity peak in the density of states. A possible physical origin ofTmax in the temperature dependence of the susceptibility is discussed.

Key words

High-Tc superconductors susceptibility Knight shift Hubbard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Hizhnyakov and E. Sigmund,Physica C 165, 655 (1988).Google Scholar
  2. 2.
    M. V. Eremin and E. Sigmund,Solid State Commun. 90, 795 (1994).Google Scholar
  3. 3.
    Zhi-Xun Shen,Physica B 197, 632 (1994).Google Scholar
  4. 4.
    K. Gofronet al., J. Phys. Chem. Solids 54, 1193 (1993).Google Scholar
  5. 5.
    A. R. Moodenbaugh and D. A. Fisher,Physica C 230, 177 (1994).Google Scholar
  6. 6.
    C. T. Chenet al., Phys. Rev. Lett. 66, 104 (1991).Google Scholar
  7. 7.
    M. V. Eremin, S. G. Solovjanov, and S. V. Varlamov,Phys. Chem. Solids 56, 1713 (1995).Google Scholar
  8. 8.
    M. V. Ereminet al., Solid State Commun. 88, 15 (1993).Google Scholar
  9. 9.
    M. V. Ereminet al., Solid State Commun. 92, 511 (1994).Google Scholar
  10. 10.
    A. A. Abrikosovet al., Physica C 214, 73 (1993).Google Scholar
  11. 11.
    T. Nakanoet al., Phys. Rev. B 49, 22, 16000 (1994).Google Scholar
  12. 12.
    F. C. Zhang and T. M. Rice,Phys. Rev. B 37, 7, 3759 (1988).Google Scholar
  13. 13.
    J. Thoma, S. Tewari, J. Ruvalds, and C. T. Rieck, unpublished.Google Scholar
  14. 14.
    P. Benard, L. Chen, and A.-M. S. Trembly,Phys. Rev. B 47, 22, 15217 (1993).Google Scholar
  15. 15.
    B. Batlogget al., Physica C 235–240, 130 (1994).Google Scholar
  16. 16.
    J. Loramet al., Physica C 235–240, 134 (1994).Google Scholar
  17. 17.
    Y.-Q. Songet al., Phys. Rev. Lett. 70, 3131 (1993).Google Scholar
  18. 18.
    Y.-Q. Songet al., unpublished.Google Scholar
  19. 19.
    R. E. Walstedtet al., Phys. Rev. Lett. 72, 3610 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. V. Eremin
    • 2
  • E. Sigmund
    • 1
  • S. G. Solovjanov
    • 1
  • S. V. Varlamov
    • 1
  1. 1.Lehrstuhl für Theoretische PhysikTU CottbusCottbusGermany
  2. 2.Kazan State UniversityKazanRussia

Personalised recommendations