Skip to main content
Log in

Fluorescence lifetime-based biosensing of zinc: Origin of the broad dynamic range

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence lifetime-based chemical sensors have recently been described for applications in medicine, environmental monitoring, and bioprocess control. These sensors transduce the level of the analyte as a change in the apparent fluorescence lifetime of an indicator phase. We have previously developed a wavelength-ratiometric fluorescence biosensor for zinc based on binding of zinc and dansylamide to apo-carbonic anhydrase which exhibited high sensitivity and selectivity. We demonstrate that the apo-carbonic anhydrase/dansylamide indicator system is very well suited for lifetime-based sensing, with a subnanomolar detection limit and greater than 1000-fold dynamic range. The theoretical basis for the wide dynamic range is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Thompson (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy Vol. II: Principles, Plenum Press, New York, pp. 345–365.

    Google Scholar 

  2. O. S. Wolfbeis (Ed.) (1991)Fiber Optic Chemical Sensors and Biosensors, Vols. 1 and 2, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. D. Wise and L. Wingard (Eds.) (1991)Biosensors with Fiber Optics, Humana Press, Clifton, NJ.

    Google Scholar 

  4. S. M. Angel (1987)Spectroscopy 2(4), 34–38.

    Google Scholar 

  5. C. Goyet, D. R. Walt, and P. G. Brewer (1992)Deep-Sea Res. 39, 1015–1026.

    Google Scholar 

  6. S. Divers, S. D. Riccitelli, and M. Blais (1993) in F. P. Milanovich (Ed.),Fiber Optic Sensors in Medical Diagnostics: SPIE Vol. 1886, SPIE, Bellingham, WA, pp. 111–138.

    Google Scholar 

  7. R. B. Thompson and E. R. Jones (1993)Anal. Chem. 65, 730–734.

    Google Scholar 

  8. R. Y. Tsien (1989)Annu. Rev. Neurosci. 12, 227.

    Google Scholar 

  9. S. Lindskoget al. (1971) in P. Boyer (Ed.),The Enzymes, Vol. 5, Academic Press, New York, pp. 587–665.

    Google Scholar 

  10. S. J. Dodgsonet al. (Eds.) (1991)The Carbonic Anhydrases, Plenum Press, New York.

    Google Scholar 

  11. J. E. Coleman (1965)Biochemistry 4, 2644–2655.

    Google Scholar 

  12. R. F. Chen and J. C. Kernohan (1967)J. Biol. Chem. 242, 5813–5823.

    Google Scholar 

  13. J. Wages, K. Hirshfield, and L. Brand (1987)Biophys. J. 51, 284A.

    Google Scholar 

  14. S. M. Keating and T. G. Wensel (1991)Biophys. J. 59, 186–202.

    Google Scholar 

  15. J. R. Bacon and J. N. Demas (1987)Anal. Chem. 59, 2780–2785.

    Google Scholar 

  16. J. R. Lakowicz (1992)Laser Focus 28(5), 60–80.

    Google Scholar 

  17. J. R. Lakowicz and R. B. Thompson (Eds.) (1993)Advances in Fluorescence Sensing Technology I: SPIE Proc. Vol. 1885, SPIE, Bellingham, WA.

    Google Scholar 

  18. M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, and O. S. Wolfbeis (1988)Anal. Chim. Acta 205, 1–6.

    Google Scholar 

  19. J. R. Lakowicz, H. Szmacinski, and R. B. Thompson (1993) in G. Cohn (Ed.),Ultrasensitive Laboratory Diagnostics: Proc. SPIE Vol. 1895, SPIE, Bellingham, WA, pp. 2–17.

    Google Scholar 

  20. J. R. Lakowicz and B. P. Maliwal (1993)Anal. Chim. Acta 271, 155–164.

    Google Scholar 

  21. H. Szmacinski and J. R. Lakowicz (1993)Anal. Chem. 65, 1668–1674.

    Google Scholar 

  22. R. B. Thompson, J. K. Frisoli, and J. R. Lakowicz (1993)Anal. Chem. 64, 2075–2078.

    Google Scholar 

  23. K. Berndt (1987)Measurement 5(4), 159–166.

    Google Scholar 

  24. R. B. Thompson and M. W. Patchan (1994) in R. Lieberman (Ed.),Chemical, Biochemical, and Environmental Fiber Sensors V: Proc. SPIE Vol. 2068, SPIE, Bellingham, WA, pp. 296–306.

    Google Scholar 

  25. G. Weber (1993)Protein Interactions, Chapman and Hall, London.

    Google Scholar 

  26. J. R. Lakowicz and I. Gryczynski (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy Vol. 1: Techniques, Plenum Press, New York, pp. 293–335.

    Google Scholar 

  27. J. R. Lakowicz, H. Szmacinski, and M. L. Johnson (1992)J. Fluoresc. 2, 47–52.

    Google Scholar 

  28. Y. Pocker and C. T. O. Fong (1983)Biochemistry 22, 813–818.

    Google Scholar 

  29. P. L. Whitney (1974)Anal. Biochem. 57, 467–476.

    Google Scholar 

  30. R. B. Thompson and E. Gratton (1988)Anal. Chem. 60, 670–674.

    Google Scholar 

  31. E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko (1984)Biophys. J. 46, 479–486.

    Google Scholar 

  32. K. W. Bruland (1988)Appl. Geochem. 3, 75.

    Google Scholar 

  33. J. R. Lakowicz and H. Cherek (1981)J. Biol. Chem. 256, 6348–6353.

    Google Scholar 

  34. B. G. Pinsky, J. J. Ladasky, J. R. Lakowicz, K. Berndt, and R. A. Hoffman (1993)Cytometry 14, 123–135.

    Google Scholar 

  35. B. W. Smith, B. T. Jones, and J. D. Winefordner (1988)Appl. Spectrosc. 42, 1469–1472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.B., Patchan, M.W. Fluorescence lifetime-based biosensing of zinc: Origin of the broad dynamic range. J Fluoresc 5, 123–130 (1995). https://doi.org/10.1007/BF00727528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00727528

Key words

Navigation