Foundations of Physics

, Volume 11, Issue 11–12, pp 839–862 | Cite as

Quantum mechanics in Galilean space-time

  • Ray E. Artz


The usual quantum mechanical treatment of a Schrödinger particle is translated into manifestly Galilean-invariant language, primarily through the use of Wigner-distribution methods. The hydrodynamical formulation of quantum mechanics is derived directly from the Wigner-distribution formulation, and the two formulations are compared. Wigner distributions are characterized directly, i.e., without reference to wave functions, and a heuristic interpretation of Wigner distributions and their evolution is developed.


Quantum Mechanic Mechanical Treatment Wigner Distribution Usual Quantum Quantum Mechanical Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Artz,Found. Phys. 11, 679 (1981).Google Scholar
  2. 2.
    E. Wigner,Phys. Rev. 40, 749 (1932).Google Scholar
  3. 3.
    J. E. Moyal,Proc. Cambridge Phil. Soc. 45, 99 (1949).Google Scholar
  4. 4.
    V. Fano,Rev. Mod. Phys. 29, 74 (1957).Google Scholar
  5. 5.
    J. H. Irving and Robert W. Zwanzig,J. Chem. Phys. 19, 1173 (1951).Google Scholar
  6. 6.
    L. Jánossy,Found. Phys. 3, 185 (1973).Google Scholar
  7. 7.
    R. E. Artz, Ph.D. Thesis, Carnegie-Mellon University, 1978.Google Scholar
  8. 8.
    B. Mielnik,Common. Math. Phys. 15, 1 (1969).Google Scholar
  9. 9.
    G. Ludwig,Common. Math. Phys. 4, 331 (1967);9, 1 (1968);26, 70 (1972); G. Dahn,Common. Math. Phys. 9, 192 (1968); P. Stolz,Common. Math. Phys. 11, 303 (1969).Google Scholar
  10. 10.
    Foundations of Quantum Mechanics and Ordered Linear Spaces, A. Hartkämper and H. Neumann, eds. (Springer-Verlag, Berlin, 1974).Google Scholar
  11. 11.
    J. Horváth,Topological Vector Spaces and Distributions, Vol. I (Addison-Wesley, Reading, MA, 1966).Google Scholar
  12. 12.
    I. M. Gelfand and G. E. Shilov,Generalized Functions, Vol. I (Academic Press, New York, 1964, p. 194).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Ray E. Artz
    • 1
  1. 1.Department of Mathematical SciencesNorthern Illinois UniversityDeKalb

Personalised recommendations