Cyclic cracking resistance of ship hull plate aluminum alloys

  • A. P. Olik


Aluminum Aluminum Alloy Hull Plate Aluminum Ship Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. T. Tumanov (ed.), Aluminum Alloys (Handbook) [in Russian], Vol. 6, Metallurgiya, Moscow (1977).Google Scholar
  2. 2.
    P. P. Ziganchenko, B. P. Kuzovenkov, and N. K. Tarasov, Ships on Underwater Wings [in Russian], Sudostroenie, Leningrad (1981).Google Scholar
  3. 3.
    S. Ya. Yarema, V. V. Panasyuk, and V. V. Popovich, Determination of the Cyclic Cracking Resistance Characteristics of Materials [in Russian], Preprint No. 9, Physicomechanical Institute, Academy of Sciences of the Ukrainian SSR, L'vov (1977).Google Scholar
  4. 4.
    RD 50-345-82. Procedure Instruction. Strength Calculations and Tests in Engineering. Methods in Mechanical Testing of Metal. Determination of the Cracking Resistance (Fracture Toughness) Characteristics in Cyclic Loading [in Russian], Standartov, Moscow (1983).Google Scholar
  5. 5.
    L. V. Ratych, S. Ya. Yarema, I. B. Polutranko, et al., “A machine with an inertia force exciter for fatigue testing at frequency higher than resonance frequency,” Fiz.-Khim. Mekh. Mater., No. 5, 91–93 (1973).Google Scholar
  6. 6.
    R. P. Wei, “Fatigue crack propagation in a high strength aluminum alloy,” Int. J. Fract. Mech.,4, No. 147 159–170.Google Scholar
  7. 7.
    Y. C. Radon, C. M. Branco, and L. B. Culber, “Crack blunting and arrest in corrosion fatigue of mild steel,” Int. J. Fract. Mech.,12, No. 3, 467–469 (1976).Google Scholar
  8. 8.
    O. N. Romaniv, Ya. N. Gladkii, and A. N. Kuroshchenov, “Effect of water on the kinetics of fatigue crack propagation in a thermally hardened spring steel,” Fiz.-Khim. Mekh. Mater., No. 2, 54–59 (1976).Google Scholar
  9. 9.
    G. E. Nordmark and W. G. Frick, “Fatigue crack arrest of low stress intensities in corrosive environment,” J. Test Eval. No. 5, 301–305 (1978).Google Scholar
  10. 10.
    L. N. Petrov, A. P. Olik, V. A. Borisov, and A Yu. Kalinkov, “Electrochemical aspects of corrosion fatigue an aluminum alloy of the Al-Zn-Mg system,” Fiz.-Khim. Mekh. Mater., No. 5, 35–39 (1986).Google Scholar
  11. 11.
    A. P. Olik, L. I. Petrov, A V. Bakulin, and A Yu. Kalinkov, “Development of corrosion-fatigue cracks in ship hull aluminum alloys,” Fiz.-Khim. Mekh. Mater., No. 2, 85–87 (1988).Google Scholar
  12. 12.
    S. Ya. Yarema, O. P. Ostash, V. P. Rychik, et al., “Propagation of fatigue cracks in sheets of alumin alloys,” Fiz.-Khim. Mekh. Mater., No. 1, 46–51 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. P. Olik
    • 1
  1. 1.G. V. Karpenko Physicochemical InstituteAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations