Foundations of Physics

, Volume 11, Issue 9–10, pp 721–740 | Cite as

Scalar products of spinors and an extension of Brauer-Wall groups

  • Pertti Lounesto


The automorphism groups of scalar products of spinors are determined. Spinors are considered as elements of minimal left ideals of Clifford algebras on quadratic modules, e.g., on orthogonal spaces. Orthogonal spaces of any dimension and arbitrary signature are discussed. For example, the automorphism groups of scalar products of Pauli spinors and Dirac spinors are, respectively, isomorphic to the matrix groups U(2) and U(2, 2). It is found that there are, in general, 32 different types or similarity classes of such automorphism groups, if one considers real orthogonal spaces of arbitrary dimension and arbitrary signature. On a more abstract level this means that the Brauer-Wall group of the real field R, consisting of graded central simple algebras over R, can be extended from the cyclic group of 8 elements to an abelian group with32 elements. This extended Brauer-Wall group is seen to be isomorphic with the group (Z 8 × Z 8 )/Z 2 and it consists of real Clifford algebras with antiinvolutions. Moreover, the subgroup determined by the antiinvolution is isomorphic to the automorphism group of scalar products of spinors.


Abelian Group Scalar Product Automorphism Group Cyclic Group Left Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Lounesto and E. Latvamaa, Conformal transformations and Clifford algebras.Proc. Am. Math. Soc. 79, 533 (1980).Google Scholar
  2. 2.
    P. Anglés,Ann. Inst. H. Poincaré. Sect. A33, 33 (1980).Google Scholar
  3. 3.
    H. Bass, Lectures on topics in algebraicK-theory.Lectures on Mathematics, No. 41 (Tata Institute of Fundamental Research, Bombay, 1967).Google Scholar
  4. 4.
    M. Karoubi,K-theory. An Introduction (Springer-Verlag, New York, 1978).Google Scholar
  5. 5.
    I. Porteous,Topological Geometry (Van Nostand-Reinhold, London, 1969).Google Scholar
  6. 6.
    C. T. C. Wall,J. Reine Angew. Math. 213, 187 (1964).Google Scholar
  7. 7.
    A. Micali and Ph. Revoy,Modules Quadratiques (Cahiers Mathematiques 10, Montpellier, 1977).Google Scholar
  8. 8.
    C. Chevalley, The construction and study of certain important algebras.Publications of Mathematical Society of Japan No 1 (Herald Printing, Tokyo, 1955).Google Scholar
  9. 9.
    R. Bott,Ann. Math. 70, 313 (1959).Google Scholar
  10. 10.
    M. F. Atiyah, R. Bott, and A. Shapiro,Topology 3, suppl.1, 3 (1964).Google Scholar
  11. 11.
    H. Bass,Am. J. Math. 96, 156 (1974).Google Scholar
  12. 12.
    E. Cartan,Leçons sur la Théorie des Spineurs I–II (Hermann, Paris, 1938);The Theory of Spinors (M.I.T. Press, Cambridge, 1966).Google Scholar
  13. 13.
    C. Chevalley,The Algebraic Theory of Spinors (Columbia University Press, New York, 1954).Google Scholar
  14. 14.
    D. Hestenes,Space-Time Algebra (Gordon and Breach, New York, 1966).Google Scholar
  15. 15.
    M. Riesz,Sur Certaines Notions Fondamentales en Théorie Quantique Relativiste. C. R. Dixièime Congrès Math. Scandinaves 1946, (Jul. Gjellerups Forlag, Copenhagen, 1947), pp. 123–148.Google Scholar
  16. 16.
    C. T. C. Wall,Bull. Am. Math. Soc. 74, 198 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Pertti Lounesto
    • 1
  1. 1.Institute of MathematicsHelsinki University of TechnologyEspooFinland

Personalised recommendations