Mass transfer coefficients in fluidized systems

  • M. I. Fridland
Petroleum and Gas Processing
  • 23 Downloads

Conclusions

  1. 1.

    During the adsorption of nitrogen oxides by the ASM grade silica gel, the increase in relative saturation is accompanied by a rapid fall in the total mass transfer coefficient caused by the increased diffusion resistance of the adsorbate in the pores of the adsorbent.

     
  2. 2.

    By criterial analysis of the experimental data and considering the coefficient of mass transfer through the gas film surrounding a porous particle, it is possible to generalize the studies on adsorption, solution, sublimation, and drying in fluidized systems, as well as the results of experiments on mass transfer from single drops and particles.

     
  3. 3.

    A criterial equation has been found, which defines the coefficients of mass transfer between particles and gas (liquid) in the diffusion region.

     
  4. 4.

    A coefficient of adsorbate distributionψ has been proposed for quantitative evaluation of the adsorbate per unit mass of the bed and for uniform distribution of the gaseous phase; the values of this coefficient have been determined for the conditions of our experiments and those of [1].

     

Keywords

Mass Transfer Quantitative Evaluation Unit Mass Mass Transfer Coefficient Nitrogen Oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Yu. Elovich and E. A. Kazakova, The Chemistry and Technology of Nitrogen Fertilizers [in Russian], Trudy GIAP, No. 1, 246 (1960).Google Scholar
  2. 2.
    C. T. Hsu and M. C. Molstad, Ind. and Engng. Chem.,47, No. 8, 1550 (1955).Google Scholar
  3. 3.
    V. A. Astakhov, V. N. Lepilin, and P. G. Romankov, The Processes of Chemical Technology [in Russian], Coll. of Papers, “Nauka” Press (1965), pp. 385Google Scholar
  4. 4.
    V. L. Kolin, V. N. Lepilin, and P. G. Romankov, The Processes of Chemical Technology [in Russian], Coll. of Papers, “Nauka” Press, 398–403 (1965).Google Scholar
  5. 5.
    T. I. Kozlov, V. N. Lepilin, P. G. Romankov, and V. Flokk, The Processes of Chemical Technology [in Russian], Coll. of Papers, “Nauka” Press, 360 (1965).Google Scholar
  6. 6.
    A. N. Planovskii and L. A. Vlasenkov, Khim. i Tekhnol. Topliv i Masel, No. 9 (1958).Google Scholar
  7. 7.
    E. N. Serpionova, Izv. MVO SSSR, Khimiya i Khimicheskaya Tekhnologiya, No. 5, 856 (1963).Google Scholar
  8. 8.
    É. B. Krasnyí, L. I. Kuznetsov-Fetisov, and G. I. Rozenberg, Izv. MVO SSSR, Khimiya i Khimicheskaya Tekhnologiya, No. 5, 802 (1963).Google Scholar
  9. 9.
    J. F. Richardson and J. Szekely, Trans. Instn. Chem. Engrs.,39, No. 3, 212 (1961).Google Scholar
  10. 10.
    G. C. Evans and C. F. Gerald, Chem. Engng. Prog.,49, 135 (1953).Google Scholar
  11. 11.
    T. Ishino and T. Ohtake, Chem. Eng. Tokyo,15, 258 (1951).Google Scholar
  12. 12.
    L. K. McCune and R. H. Wilhelm, Ind. Eng. Chem.,41, 1124 (1949).Google Scholar
  13. 13.
    P. H. Rove and K. T. Claxton, Trans. Chem. Engrs.,43, no. 10, 321 (1965).Google Scholar
  14. 14.
    P. Harriott, A. I. Ch. E. Journal,8, No. 1, 93 (1962).Google Scholar
  15. 15.
    W. Resnik and R. R. White, Chem. Engng. Progr.,45, No. 6, 377 (1949).Google Scholar
  16. 16.
    R. E. Riccetti and G. Thodos, A. I. Ch. E. Journal,7, no. 3, 442 (1961).Google Scholar
  17. 17.
    J. C. Chu, J. Kalil, and W. A. Wetteroth, Chem. Eng. Progr.,49, 141 (1953).Google Scholar
  18. 18.
    A. S. Gupta and G. Thodos, A. I. Ch. E. Journal,8, No. 5, 608 (1962).Google Scholar
  19. 19.
    R. D. Bradshaw and J. E. Myers, A. I. Ch. E. Journal,9, No. 5, 590 (1963).Google Scholar
  20. 20.
    O. Krischer and E. Mosberger, Chem. Ing. Techn.,37, No. 9, 925 (1965).Google Scholar
  21. 21.
    O. Krischer and E. Mosberger, Chem. Ing. Techn.,37, No. 12, 1253 (1965).Google Scholar
  22. 22.
    P. M. Heertjes, Canad. J. Chem. Engng.,40, No. 3, 105 (1962).Google Scholar
  23. 23.
    B. W. Gamson, Chem. Engng. Progr.,47, No. 1, 19 (1951).Google Scholar
  24. 24.
    K. N. Kettenring, E. L. Manderfield, and J. M. Smith, Chem. Eng. Progr.,46, No. 3, 139 (1950).Google Scholar
  25. 25.
    D. M. Ward and C. M. Bowman, Canad. J. Chem. Engng.,39, No. 9 (1961).Google Scholar
  26. 26.
    D. M. Ward and C. W. Bowman, Canad. J. Chem. Engng.,40, No. 4, 164 (1962).Google Scholar
  27. 27.
    G. D. Kinzer and R. Gunn, J. Meteor,8, 71 (1951).Google Scholar
  28. 28.
    Y. Kitaura and K. Aoki, Chem. Engng. Tokyo,24, 134 (1960).Google Scholar
  29. 29.
    W. E. Ranz and W. R. Marshall, Chem. Engng. Progr.,48, 403 (1952).Google Scholar
  30. 30.
    H. A. Kramers, Physica,12, 61 (1946).Google Scholar
  31. 31.
    E. Spyros and G. Thodos. A. I. Ch. Journal,7, No. 1, 78 (1961).Google Scholar
  32. 32.
    W. E. Ranz and W. R. Marshall, Chem. Engng. Progr.,48, 141 (1952).Google Scholar
  33. 33.
    M. Leva, Fuidization [in Russian], Gostoptekhizdat, 106–108 (1961).Google Scholar
  34. 34.
    G. Stuart, The structure of Molecules [in Russian Translation], ONT1, 38 (1937).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • M. I. Fridland
    • 1
  1. 1.State Institute for the Nitrogen IndustryUSSR

Personalised recommendations