Journal of Applied Electrochemistry

, Volume 10, Issue 2, pp 203–211 | Cite as

Pressure effects on the performance and the e.m.f. of the Mg-AgCl seawater battery

  • M. Hiroi


The discharge curves of a magnesium-silver chloride seawater activated cell at different pressures were measured to examine the performance at great ocean depths. The e.m.f. measurements at increasing pressures were also carried out in order to understand the small differences in the discharge behaviour under different pressures and to get some information on the dissolution kinetics of magnesium in chloride solutions. The performance is shown at atmospheric pressure and at increased pressure and there is virtually no change in output power. It is found that Mg AZ61 is a better choice than Mg AZ31 at high pressures because of the nature of the sludge it forms. Partial molal volume changes for the magnesium oxidation reaction obtained with pure magnesium and its alloys (AZ31 and AZ61) in 0.5 M NaCl are presented and discussed.


Magnesium Sludge Output Power Molal Volume Oxidation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. M. L. Valeriote and L. D. Gallop,J. Electrochem. Soc. 121 (1974) 1245.Google Scholar
  2. [2]
    F. P. Malaspina,IECEC '75 Record (1975) 817.Google Scholar
  3. [3]
    G. J. Hills and P. J. Ovenden, in ‘Advances in Electrochemistry and Electrochemical Engineering,’ Vol. 4, (Edited by P. Delahay) Electrochemistry at High Pressures, Interscience, New York (1966).Google Scholar
  4. [4]
    P. W. Bridgman, ‘The Physics of High Pressure’ Dover, New York (1970) pp. 372, 360.Google Scholar
  5. [5]
    W. J. Hornibrook, G. J. Janz and A. R. Gordon,J. Amer. Chem. Soc. 64 (1942) 513.Google Scholar
  6. [6]
    ‘Chemical Engineer's Handbook,’ (Edited by R. H. Perry, C. H. Chilton and S. D. Kirkpatrick) 4th ed., 14–5, McGraw-Hill, New York (1963).Google Scholar
  7. [7]
    W. N. Carson, W. H. Fischer and E. G. Siwek,Electrochem. Tech. 5 (1967) 423.Google Scholar
  8. [8]
    S. Harned and B. B. Owen, ‘The Physical Chemistry of Electrolytic Solutions,’ 3rd edn., Reinhold Publishing Corp., New York (1958).Google Scholar
  9. [9]
    G. G. Perrault,J. Electroanal. Chem. 27 (1970) 47.Google Scholar
  10. [10]
    [10]Idem, in ‘Encyclopedia of Electrochemistry of the Element,’ (Edited by A. J. Bard) VIII-4, Marcel Dekker, New York (1978).Google Scholar
  11. [11]
    B. B. Owen and S. R. Brinkley, Jr.,Chem. Rev. 29 (1941) 461.Google Scholar
  12. [12]
    R. M. Noyes,J. Amer. Chem. Soc. 86 (1964) 971.Google Scholar
  13. [13]
    F. J. Millero, in ‘Water and Aqueous Solutions,’ (Edited by R. A. Horne) Wiley-Interscience, New York (1972) ch. 13.Google Scholar
  14. [14]
    J. V. Leyendekkers, ‘Thermodynamics of Seawater,’ Part 1, Marcel Dekker, New York (1976) ch. 4.Google Scholar
  15. [15]
    ‘Handbook of Chemistry and Physics,’ 59th edn., Section B, CRC Press (1978–1979).Google Scholar
  16. [16]
    D. A. Davenport, R. B. Fosterling and V. Srinivasan,J. Chem. Ed. 55 (1978) 93.Google Scholar
  17. [17]
    B. Siegel and G. G. Libowitz, in ‘Metal Hydrides,’ (Edited by W. M. Mueller, J. P. Blackledge and G. G. Libowitz), Academic Press, New York (1968) ch. 12.Google Scholar
  18. [18]
    J. L. Robinson and P. F. King,J. Electrochem. Soc. 108 (1961) 36.Google Scholar
  19. [19]
    C. Brouchere,J. Inst. Metals 71 (1943) 131.Google Scholar
  20. [20]
    M. E. Straumanis and B. K. Bhatia,J. Electrochem. Soc. 110 (1963) 353.Google Scholar
  21. [21]
    R. L. Petty, A. W. Davidson and J. Kleinberg,J. Amer. Chem. Soc. 76 (1954) 363.Google Scholar
  22. [22]
    W. J. James, M. E. Straumanis and J. W. Johnson,Corrosion 23 (1967) 15.Google Scholar
  23. [23]
    J. W. Johnson, C. K. Chi and W. J. James,ibid 23 (1967) 204.Google Scholar
  24. [24]
    P. F. King,J. Electrochem. Soc. 113 (1966) 536.Google Scholar
  25. [25]
    M. Hiroi,Denki Kaguka (J. Electrochem. Soc. Japan) 41 (1973) 608.Google Scholar
  26. [26]
    I. Iidaka,Nippon Kaguka Zasshi (J. Chem. Soc. Japan) 51 (1930) 301, 626.Google Scholar
  27. [27]
    G. Wada,ibid 75 (1954) 170, 746.Google Scholar
  28. [28]
    L. Whitby,Trans. Faraday Soc. 29 (1933) 415, 853, 1318.Google Scholar
  29. [29]
    G. G. Perrault,C. R. Acad. Sci., Ser. C. 280 (1975) 1069.Google Scholar
  30. [30]
    J. O'M. Bockris, D. Drazic and A. R. Despic,Electrochim. Acta 4 (1961) 325.Google Scholar
  31. [31]
    E. Gileadi and B. E. Conway, in ‘Modern Aspects of Electrochemistry,’ No. 3, (Edited by J. O'M. Bockris and B. E. Conway) Butterworths, London (1964) p. 381.Google Scholar
  32. [32]
    R. J. Chin and K. Nobe,J. Electrochem. Soc. 119 (1972) 1457.Google Scholar
  33. [33]
    E. J. Kelly,ibid. 112 (1965) 124.Google Scholar
  34. [34]
    J. O'M. Bockris, in ‘Modern Aspects of Electrochemistry,’ No. 1, (Edited by J. O'M. Bockris) Plenum Press, New York (1968).Google Scholar
  35. [35]
    H. A. Robinson,Trans. Electrochem. Soc. 90 (1946) 485.Google Scholar
  36. [36]
    D. A. Vermilyea and C. F. Kirk,J. Electrochem. Soc. 116 (1969) 1487.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • M. Hiroi
    • 1
  1. 1.Chemical LaboratoryKobe University of Mercantile MarineKobeJapan

Personalised recommendations