Skip to main content
Log in

Pressure effects on the performance and the e.m.f. of the Mg-AgCl seawater battery

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The discharge curves of a magnesium-silver chloride seawater activated cell at different pressures were measured to examine the performance at great ocean depths. The e.m.f. measurements at increasing pressures were also carried out in order to understand the small differences in the discharge behaviour under different pressures and to get some information on the dissolution kinetics of magnesium in chloride solutions. The performance is shown at atmospheric pressure and at increased pressure and there is virtually no change in output power. It is found that Mg AZ61 is a better choice than Mg AZ31 at high pressures because of the nature of the sludge it forms. Partial molal volume changes for the magnesium oxidation reaction obtained with pure magnesium and its alloys (AZ31 and AZ61) in 0.5 M NaCl are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. M. L. Valeriote and L. D. Gallop,J. Electrochem. Soc. 121 (1974) 1245.

    Google Scholar 

  2. F. P. Malaspina,IECEC '75 Record (1975) 817.

  3. G. J. Hills and P. J. Ovenden, in ‘Advances in Electrochemistry and Electrochemical Engineering,’ Vol. 4, (Edited by P. Delahay) Electrochemistry at High Pressures, Interscience, New York (1966).

    Google Scholar 

  4. P. W. Bridgman, ‘The Physics of High Pressure’ Dover, New York (1970) pp. 372, 360.

    Google Scholar 

  5. W. J. Hornibrook, G. J. Janz and A. R. Gordon,J. Amer. Chem. Soc. 64 (1942) 513.

    Google Scholar 

  6. ‘Chemical Engineer's Handbook,’ (Edited by R. H. Perry, C. H. Chilton and S. D. Kirkpatrick) 4th ed., 14–5, McGraw-Hill, New York (1963).

    Google Scholar 

  7. W. N. Carson, W. H. Fischer and E. G. Siwek,Electrochem. Tech. 5 (1967) 423.

    Google Scholar 

  8. S. Harned and B. B. Owen, ‘The Physical Chemistry of Electrolytic Solutions,’ 3rd edn., Reinhold Publishing Corp., New York (1958).

    Google Scholar 

  9. G. G. Perrault,J. Electroanal. Chem. 27 (1970) 47.

    Google Scholar 

  10. [10]Idem, in ‘Encyclopedia of Electrochemistry of the Element,’ (Edited by A. J. Bard) VIII-4, Marcel Dekker, New York (1978).

    Google Scholar 

  11. B. B. Owen and S. R. Brinkley, Jr.,Chem. Rev. 29 (1941) 461.

    Google Scholar 

  12. R. M. Noyes,J. Amer. Chem. Soc. 86 (1964) 971.

    Google Scholar 

  13. F. J. Millero, in ‘Water and Aqueous Solutions,’ (Edited by R. A. Horne) Wiley-Interscience, New York (1972) ch. 13.

    Google Scholar 

  14. J. V. Leyendekkers, ‘Thermodynamics of Seawater,’ Part 1, Marcel Dekker, New York (1976) ch. 4.

    Google Scholar 

  15. ‘Handbook of Chemistry and Physics,’ 59th edn., Section B, CRC Press (1978–1979).

  16. D. A. Davenport, R. B. Fosterling and V. Srinivasan,J. Chem. Ed. 55 (1978) 93.

    Google Scholar 

  17. B. Siegel and G. G. Libowitz, in ‘Metal Hydrides,’ (Edited by W. M. Mueller, J. P. Blackledge and G. G. Libowitz), Academic Press, New York (1968) ch. 12.

    Google Scholar 

  18. J. L. Robinson and P. F. King,J. Electrochem. Soc. 108 (1961) 36.

    Google Scholar 

  19. C. Brouchere,J. Inst. Metals 71 (1943) 131.

    Google Scholar 

  20. M. E. Straumanis and B. K. Bhatia,J. Electrochem. Soc. 110 (1963) 353.

    Google Scholar 

  21. R. L. Petty, A. W. Davidson and J. Kleinberg,J. Amer. Chem. Soc. 76 (1954) 363.

    Google Scholar 

  22. W. J. James, M. E. Straumanis and J. W. Johnson,Corrosion 23 (1967) 15.

    Google Scholar 

  23. J. W. Johnson, C. K. Chi and W. J. James,ibid 23 (1967) 204.

    Google Scholar 

  24. P. F. King,J. Electrochem. Soc. 113 (1966) 536.

    Google Scholar 

  25. M. Hiroi,Denki Kaguka (J. Electrochem. Soc. Japan) 41 (1973) 608.

    Google Scholar 

  26. I. Iidaka,Nippon Kaguka Zasshi (J. Chem. Soc. Japan) 51 (1930) 301, 626.

    Google Scholar 

  27. G. Wada,ibid 75 (1954) 170, 746.

    Google Scholar 

  28. L. Whitby,Trans. Faraday Soc. 29 (1933) 415, 853, 1318.

    Google Scholar 

  29. G. G. Perrault,C. R. Acad. Sci., Ser. C. 280 (1975) 1069.

    Google Scholar 

  30. J. O'M. Bockris, D. Drazic and A. R. Despic,Electrochim. Acta 4 (1961) 325.

    Google Scholar 

  31. E. Gileadi and B. E. Conway, in ‘Modern Aspects of Electrochemistry,’ No. 3, (Edited by J. O'M. Bockris and B. E. Conway) Butterworths, London (1964) p. 381.

    Google Scholar 

  32. R. J. Chin and K. Nobe,J. Electrochem. Soc. 119 (1972) 1457.

    Google Scholar 

  33. E. J. Kelly,ibid. 112 (1965) 124.

    Google Scholar 

  34. J. O'M. Bockris, in ‘Modern Aspects of Electrochemistry,’ No. 1, (Edited by J. O'M. Bockris) Plenum Press, New York (1968).

    Google Scholar 

  35. H. A. Robinson,Trans. Electrochem. Soc. 90 (1946) 485.

    Google Scholar 

  36. D. A. Vermilyea and C. F. Kirk,J. Electrochem. Soc. 116 (1969) 1487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiroi, M. Pressure effects on the performance and the e.m.f. of the Mg-AgCl seawater battery. J Appl Electrochem 10, 203–211 (1980). https://doi.org/10.1007/BF00726087

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00726087

Keywords

Navigation