Skip to main content
Log in

Performance of bipolar trickle reactors

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The performance of the bipolar trickle reactor has been studied using the electrochemical tracer technique. The theoretical equations for a semi-infinite dispersion model have been fitted to the experimental responses for the reactor with and without electrochemical reaction. Hydrodynamic parameters and reaction rate constants for copper deposition as functions of both the film Reynolds number and the dimensions of the bipolar trickle reactor have been derived and are interpreted in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(Bo):

Bodenstein number (uL p/D)

C :

amplitude of the response curve (dimen sionless)

C 0 :

area under the response curve (mol cm−3 s)

D :

dispersion coefficient (cm2s−1)

h :

film thickness (cm)

k/h :

first order reaction rate constant (s−1)

L :

length of the reactor (cm)

L p :

length of the ring (cm)

n r :

number of rings in a single layer

(Pe):

Peclét number (uL/D)

(Re)f :

film Reynolds number\(\frac{v}{{2n_r (r_o + r_i )v}}\)

r i,r o :

inner and outer radii of the ring (cm)

t :

time (s)

u :

mean liquid velocity (cm s−1)

v :

volumetric liquid velocity (cm3 s−1)

τ :

residence time (s)

ν :

kinematic viscosity (cm2s−1)

References

  1. M. Fleischmann and Z. Ibrasagić,J. Appl. Electrochem. 10 (1980) 151.

    Google Scholar 

  2. Idem, ibid 10 (1980) 157.

    Google Scholar 

  3. Z. Ibrisagić, PhD Thesis, University of Southampton (1977).

  4. A. Boussoulengas, PhD Thesis, University of Southampton (1976).

  5. V. G. Levich, V. S. Markin and Yu. A. Chismadzhev,Chem. Eng. Sci. 22 (1967) 1357.

    Google Scholar 

  6. R. W. Michell and I. A. Furzer,Chem. Eng. J. 4 (1972) 53.

    Google Scholar 

  7. Idem, Trans. Inst. Chem. Eng. 50 (1972) 334.

    Google Scholar 

  8. K. B. Bischeff and E. A. McCiacken, Ind. Eng. Chem.58 (1966) 18.

    Google Scholar 

  9. D. J. Gunn,Chem Eng. CE-153 (1968).

  10. K. B. Bischeff,Ind. Chem. 58 (1966) 18.

    Google Scholar 

  11. A. Bennet and F. Goodridge,Trans, Inst. Chem. Eng. 48 (1970) 232.

    Google Scholar 

  12. J. Villermaux and W. P. M. van Swaaij,Chem. Eng. Sci. 24 (1969) 1097.

    Google Scholar 

  13. B. A. Buffham, L. G. Gibilare and M. N. Rather,AICHE J. 16 (1970) 218.

    Google Scholar 

  14. V. G. Rae and Y. B. G. Varma,ibid 22 (1976) 612.

    Google Scholar 

  15. C. N. Satterfield,Ibid 21 (1975) 209.

    Google Scholar 

  16. T. Otake and E. Kunigita,Chem. Eng. (Tokyo)22 (1958) 144.

    Google Scholar 

  17. F. DeMaria and R. White,AICHE J. 6 (1960) 473.

    Google Scholar 

  18. C. J. Hoogendoorn and J. Lips,Canad. J. Chem. Eng. (1965) 125.

  19. H. L. Shulman and W. G. Meffish,AICHE J. 13 (1967) 1137.

    Google Scholar 

  20. V. E. Sater, O. Levenspiel, I & Ec. Fundamentals,5 (1966) 86.

    Google Scholar 

  21. C. N. Satterfield, A. A. Pelossof and T. K. Sherwood,AICHE J. 15 (1969) 226.

    Google Scholar 

  22. W. P. M. van Swaaij, J. C. Charpentier and J. Villermaux,Chem. Eng. Sci. 24 (1969) 1083.

    Google Scholar 

  23. J. Baldi and S. Sicardi,Chem. Eng. Sci. 30 (1975) 617.

    Google Scholar 

  24. J. G. Schwartz, E. Weger and M. P. Duduković,AICHE J. 22 (1976) 894.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischmann, M., Ibrisagić, Z. Performance of bipolar trickle reactors. J Appl Electrochem 10, 169–172 (1980). https://doi.org/10.1007/BF00726081

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00726081

Keywords

Navigation