Journal of Superconductivity

, Volume 7, Issue 2, pp 481–483 | Cite as

Temperature dependence of the infrared optical properties of YBa2Cu3O7: A plasmon damping model

  • H. L. Dewing
  • K. Scott
XV. Microwave and Infrared Spectroscopy; Penetration Depth; Photoemission; NMR

Abstract

The temperature dependence observed in the mid- and near-infrared optical properties of YBa2Cu3O7 is explained in terms of the Drude model for free charge carriers. In the Drude model, the linear temperature dependence of the dc resistivity arises from the free charge carriers having a temperature-dependent mean free path. This temperature dependence results in the plasmon contribution to the dielectric constant having a damping coefficient which also varies linearly with temperature. We find that the temperature dependence which is observed in the absorption and reflection spectra of YBa2Cu3O7 is consistent with this simple model.

Key words

High-Tc superconductors YBa2Cu3O7 infrared plasmon resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Timusk and D. B. Tanner, inPhysical Properties of High-Temperature Superconductors I, D. M. Ginsberg, ed. (World Scientific, Singapore, 1989), p. 339.Google Scholar
  2. 2.
    R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudhari, and C. Feild,Phys. Rev. B 39, 6571 (1989).Google Scholar
  3. 3.
    Z. Schlesinger, R. T. Collins, F. Holtzberg, C. Feild, G. Koren, and A. Gupta,Phys. Rev. B 41, 11237 (1990).Google Scholar
  4. 4.
    H. L. Dewing and E. K. H. Salje,Supercond. Sci. Technol. 5, 50 (1992).Google Scholar
  5. 5.
    H. L. Dewing, E. K. H. Salje, K. Scott, and A. P. Mackenzie,J. Phys. C 4, L109 (1992).Google Scholar
  6. 6.
    C. Rüscher and M. Götte,Solid State Commun. 85, 393 (1993).Google Scholar
  7. 7.
    I. Fugol, V. Samovarov, A. Ratner, V. Zhuravlev, G. Saemann-Ischenko, B. Holzapfel, and O. Meyer,Solid State Commun. 86, 385 (1993).Google Scholar
  8. 8.
    J. Humlicek, J. Kircher, H.-U. Habermeier, M. Cardona, and A. Röseler,Physica C 190, 383 (1992).Google Scholar
  9. 9.
    Z. Schlesinger, R. T. Collins, D. L. Kaiser, F. Holtzberg, C. V. Chandrashekhar, M. W. Shafer, and T. M. Plaskett,Physica C 153–155, 1734 (1988).Google Scholar
  10. 10.
    A. Mawdsley, H. J. Trodahl, J. Tallon, J. Sarfati, and A. B. Kaiser,Nature (London) 328, 233 (1987).Google Scholar
  11. 11.
    H. L. Dewing and E. K. H. Salje,J. Solid State Chem. 100, 363 (1992).Google Scholar
  12. 12.
    H. L. Dewing and R.-S. Liu, unpublished.Google Scholar
  13. 13.
    J. E. Hirsch,Physica C 199, 305 (1992).Google Scholar
  14. 14.
    I. Bozovic,Phys. Rev. B 42, 1969 (1990).Google Scholar
  15. 15.
    S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V. Klein, W. C. Lee, J. Giapintzakis, D. M. Ginsberg, B. W. Veal, and A. P. Paulikas,Phys. Rev. B 47, 8233 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • H. L. Dewing
    • 1
    • 2
  • K. Scott
    • 1
  1. 1.IRC in SuperconductivityCambridgeUK
  2. 2.Department of Earth SciencesCambridgeUK

Personalised recommendations