Skip to main content
Log in

Fluorescence spectroscopy of monoclonal antibodies produced against the fluorescyl hapten conjugated through the xanthene ring

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two mouse anti-fluorescyl monoclonal antibodies (mAb), clones FL43.1 and FL55.3, were produced to the fluorescein hapten, which was conjugated to the carrier protein through the 4′ position of the xanthene ring. Association constants (K A) and thermodynamic parameters for both mAb were ascertained by monitoring the steady-state intrinsic and fluorescein fluorescence. Both techniques were in good agreement and gaveK A values in the 109 M −1 range. Ligand-induced intrinsic fluorescence quenching showed a hypsochromic shift for mAb FL43.1, but not for FL55.3, suggesting that the ligand interacts with different tryptophan residues in each mAb. Because these mAb are directed toward the phenylcarboxylate portion of fluorescein, the different ionic and structural forms should be useful as indicators of antibody binding site pH and buffering capacity near the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Day (1992)Advanced Immunochemistry, Wiley Liss, New York.

    Google Scholar 

  2. D. R. Davies, E. A. Padlan, and S. Sheriff (1990)Annu. Rev. Biochem. 59, 439–473.

    Google Scholar 

  3. E. A. Kabat, T. T. Wu, and H. Bilofsky (1977)J. Biol. Chem. 252, 6609–6616.

    Google Scholar 

  4. E. A. Padlan (1994)Mol. Immunol. 31, 169–217.

    Google Scholar 

  5. S. Tonegowa (1983)Nature 30, 575–581.

    Google Scholar 

  6. E. A. Padlan (1990)Proteins 7, 112–124.

    Google Scholar 

  7. I. Mian, A. Bradwell, and A. Olson (1991)J. Mol. Biol. 217, 133–151.

    Google Scholar 

  8. C. Chothia and A. M. Lesk (1987)J. Mol. Biol. 196, 901–917.

    Google Scholar 

  9. C. Chothia, A. M. Lesk, A. Tramontano, M. Levitt, S. J. Smith-Gill, G. Air, S. Sheriff, E. A. Padlan, D. Davies, W. R. Tulip, P. M. Colman, S. Spinelli, P. M. Alzari, and R. J. Poljak (1989)Nature 342, 877–883.

    Google Scholar 

  10. E. A. Kabat, T. T. Wu, H. M. Perry, K. S. Gottesman, and C. Foeller (1991) U. S. Department of Health and Human Services NIH Publication 91-3242.

  11. J. Anglister, R. Levy, and T. Scherf (1989)Biochemistry 28, 3360–3365.

    Google Scholar 

  12. W. D. Bedzyk and E. W. Voss, Jr. (1991)Mol. Immunol. 28, 27–34.

    Google Scholar 

  13. J. Novotny, R. E. Bruccoleri, and F. A. Saul (1989)Biochem Instr. 28, 4735–4749.

    Google Scholar 

  14. C. A. Hunter and J. K. Sanders (1990)J. Am. Chem. Soc. 112, 5525–5534.

    Google Scholar 

  15. G. Cilento and K. Zinner (1968) in B. Pullman (Ed.),Molecular Associations in Biology, Academic Press, New York, pp. 309–321.

    Google Scholar 

  16. J. R. Lakowicz (1991)Principles of Fluorescence Spectroscopy, Plenum Press, New York, Vol. 2, pp. 341–339.

    Google Scholar 

  17. S. F. Velick, C. W. Parker, and H. N. Eisen (1960)Proc. Natl. Acad. Sci. USA 46, 1470–1482.

    Google Scholar 

  18. R. Watt and E. Voss, Jr. (1977)Immunochemistry 14, 533–541.

    Google Scholar 

  19. E. F. G. Templeton and W. R. Ware (1985)Mol. Immunol. 22, 45–55.

    Google Scholar 

  20. A. K. Rudolph, P. D. Burrows, and M. R. Wahl (1981)Eur. J. Immunol. 11, 527–529.

    Google Scholar 

  21. W. D. Bedzyk, J. N. Herron, A. B. Edmundson, and E. W. Voss, Jr. (1990)J. Biol. Chem. 265, 133–138.

    Google Scholar 

  22. J. N. Herron, X. He, M. L. Mason, E. W. Voss, Jr., and A. B. Edmundson (1989)Proteins 5, 271–280.

    Google Scholar 

  23. C. L. Kirkemo and M. T. Shipchandler (1986)U. S. Patent #14,614,823.

    Google Scholar 

  24. C. L. Kirkemo and M. T. Shipchandler (1985)U. S. Patent #14,510,251.

    Google Scholar 

  25. M. T. Shipchandler, J. R. Fino, L. D. Klein, and C. L. Kirkemo (1987)Anal. Biochem. 162, 89–101.

    Google Scholar 

  26. P. H. Kussie, G. Albright, and D. S. Linthicum (1989)Meth. Enzymol. 178, 49–63.

    Google Scholar 

  27. R. A. Stinson and J. J. Holbrook (1973)Biochem. J. 131, 719–728.

    Google Scholar 

  28. J. Anglister, M. W. Bond, T. Frey, D. Leahy, M. Levitt, H. M. McConnell, G. S. Rule, J. Tomasello, and M. Whittaker (1987)Biochemistry 26, 6058–6064.

    Google Scholar 

  29. S. K. Burley and G. A. Petsko (1986)FEBS Lett. 203, 139–143.

    Google Scholar 

  30. H. Edelhoch (1967)Biochemistry 6, 1948–1954.

    Google Scholar 

  31. P. R. Droupadi, J. M. Anchin, E. A. Meyers, and D. S. Linthicum (1993)J. Mol. Recog. 5, 173–179.

    Google Scholar 

  32. J. Herron N., D. M. Kranz, D. M. Jameson, and E. W. J. Voss, Jr. (1986)Biochemistry 25, 4602–4609.

    Google Scholar 

  33. S. Shifrin (1968) in B. Pullman (Ed.),Molecular Associations in Biology, Academic Press, New York, pp. 323–341.

    Google Scholar 

  34. M. M. Martin and L. Lindqvist (1975)J. Luminesc. 10, 381–390.

    Google Scholar 

  35. V. G. Omelyanenko, W. Jiskoot, and J. N. Herron (1993)Biochemistry 32, 10423–10429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droupadi, P.R., Nanavaty, T., Smith, C. et al. Fluorescence spectroscopy of monoclonal antibodies produced against the fluorescyl hapten conjugated through the xanthene ring. J Fluoresc 5, 273–277 (1995). https://doi.org/10.1007/BF00723898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723898

Key words

Navigation