Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. A. Cracknell, “The effect of hydrogen on steel,” Chem. Eng. (Gr. Brit.), No. 306, 92–94 (1976).

    Google Scholar 

  2. G. Bombara and M. Cavallini, “Two cases of stress cracking of pressure vessels in chemical plants,” Brit. Corros. J.,12, No. 4, 241–242 (1977).

    Google Scholar 

  3. H. Brokop, “Werkstoffs chaden durch Wasserstoffeinwirkung,” Prakt. Metallogr.,12, No. 9, 470–475 (1975).

    Google Scholar 

  4. P. Bastien, “L'action de l'hydrogéne sur le fer et les aciers et ses conséquences dans l'industrie,” in: L'hydrogéne dans les métaux, Vol. 1, Paris (1972), pp. 11–15.

    Google Scholar 

  5. J. P. Hirth and H. H. Johnson, “Hydrogen problems in energy related technology,” Corrosion,32, No. 1, 3–15 (1976).

    Google Scholar 

  6. A. N. Podgornyi and I. L. Varshavskii, Hydrogen — the Fuel of the Future [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  7. D. P. Gregory, “The hydrogen economy,” Sci. Amer.,228, No. 1, 13–21 (1973).

    Google Scholar 

  8. G. Brewer, “Alternative fuels for future aircraft,” in: Proc. 12th Intercos. Energy Convers. Eng. Conf., Washington, 1977, Vol. 1, La Grange Park (1977), pp. 62–68.

    Google Scholar 

  9. G. V. Karpenko, The Influence of Water on the Mechanical Properties of Steel [in Ukrainian], Vid-vo Akad. Nauk UkrRSR, Kiev (1960).

    Google Scholar 

  10. V. I. Pokhmurskii, M. M. Shved, and N. Ya. Yaremchenko, The Influence of Hydrogen on the Processes of Deformation and Fracture of Iron and Steel [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  11. “The life of constructional metallic materials in a hydrogen medium,” Preprint No. 33, Fiz.-Mekh. Inst. Akad. Nauk UkrSSR, L'vov (1980).

  12. Moran, “Effect of hydrogen on behavior of materials,” Proc. Int. Conf., 1975, Met. Soc. AIME, New York (1976).

    Google Scholar 

  13. M. Smialowskii, Hydrogen in Steel, Pergamon Press, Oxford (1962).

    Google Scholar 

  14. G. P. Cherepanov, The Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  15. A. E. Andreikiv, The Fracture of Quasibrittle Bodies with Cracks in the Complex Stressed State [in Russian], Naukova, Dumka, Kiev (1979).

    Google Scholar 

  16. Hydrogen in Metals. Proc. 2nd Int. Congress, Paris, 1977, Oxford (1978).

  17. H. G. Nelson, “Testing for hydrogen environment embrittle ment: primary and secondary influences,” in: Hydrogen Embrittlement Testing. ASTM STP 543, Philadelphia (1974), pp. 152–169.

  18. D. P. Williams, “A new criterion for failure of materials by environment-induced cracking,” Int. J. Fract.,9, No. 1, 63–74 (1973).

    Google Scholar 

  19. J. E. Srawley, “Fracture toughness in plane strain,” in: Fracture [Russian translation], Vol. 4, Mashinostroenie, Moscow (1977), pp. 47–67.

    Google Scholar 

  20. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Methods of Determining the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  21. Method Instructions. Calculations and Tests for Strength in Machine Building. Methods of Mechanical Testing. Determination of the Characteristics of Fracture Toughness (Crack Resistance) [in Russian], Vessoyuz. Nauch.-Issled. Inst. Norm. Mashinostr., Moscow (1978).

  22. M. É. Chaplya, G. I. Smoroda, M. N. Zima, and V. S. Kharin, “The influence of gaseous hydrogen on the crack resistance and character of fracture of 40Kh steel,” in: Materials of the IX Conference of Young Scientists of the Physicomechanical Institute of the Academy of Sciences of the Ukrainian SSR. Physicochemical Mechanics of Materials Section [in Russian], L'vov (1979), Deposited in the All-Union Institute for Scientific and Technical Information, No. 4423-80Dep, pp. 208–210.

  23. B. A. Kolachev, V. I. Mal'kov, and V. I. Sedov, “The use of linear fracture mechanics for studying the hydrogen brittleness of titanium alloys,” Fiz.-Khim. Mekh. Mater., No. 6, 7–12 (1976).

    Google Scholar 

  24. V. T. Alymov, M. I. Astredinov, V. D. Starinskii, and S. M. Alekseev, “The influence of gaseous hydrogen at increased pressures on the characteristics of fracture of Kh16N6 steel,” Fiz.-Khim. Mekh. Mater., No. 2, 35–38 (1976).

    Google Scholar 

  25. I. S. Yablonski, “The relationship of the resistance to fracture of steel to the degree of hydrogen absorption,” Fiz.-Khim. Mekh. Mater., No. 6, 47–56 (1979).

    Google Scholar 

  26. T. L. Capeletti, “Effect of hydrogen on the fracture toughness of 17-4PH stainless steel,” in: Proc. Second Int. Conf. Mech. Behav. Mater., Boston (1976), pp. 1489–1492.

  27. G. Johnson, “The influence of the medium on the fracture of high-strength materials,” in: Fracture [Russian translation], Vol. 3, Mir, Moscow (1976), pp. 729–775.

    Google Scholar 

  28. R. J. Walter and W. T. Chandler, “The role of crack blunting in sustained load crack growth,” Scr. Met.,13, No. 10, 975–976 (1979).

    Google Scholar 

  29. G. W. Simmons, P. S. Pao, and R. P. Wei, “Fracture mechanics and surface chemistry studies of subcritical crack growth in AISI 4340 steel,” Met. Trans.,A9, No. 8, 1147–1158 (1978).

    Google Scholar 

  30. G. E. Kerns and R. W. Staehle, “Slow crack growth in a high strength steel exposed to H2-H2S gaseous mixtures,” Corrosion,34, 306–311 (1978).

    Google Scholar 

  31. P. McIntyre and E. F. Walker, “The influence of applied polarization on the stress corrosion properties of a high strength steel,” in: Hydrogen in Metals. Proc. 2nd Int. Congr., Paris (1978), p. 3E4/1-9.

  32. R. P. Wei, “Application of fracture mechanics to stress corrosion cracking studies,” in: Fundamental Aspects of Stress Corrosion Cracking, Ohio State Univ., Columbus (1967), pp. 104–112.

    Google Scholar 

  33. A. Baus et al., “Étude par la mécanique de la rupture de la ténacité, de la fissuration par fatigue et de la fissuration par corrosion sous contrainte d'aciers á tres haute résistance,” Rev. Mét.,72, No. 12, 891–935 (1975).

    Google Scholar 

  34. O. N. Romaniv, G. N. Nikiforchin, and N. A. Deev, “Kinetic effects in the mechanics of retarded fracture of high-strength alloys,” Fiz.-Khim. Mekh. Mater., No. 4, 9–24 (1976).

    Google Scholar 

  35. J. D. Landes and R. P. Wei, “The kinetics of subcritical crack growth under sustained loading,” Int. J. Fract.,9, No. 3, 277–293 (1973).

    Google Scholar 

  36. H. H. Johnson and A. M. Willner, “Moisture and stable crack growth in a high strength steel,” Appl. Mat. Res.,4, 34–40 (1965).

    Google Scholar 

  37. A. W. Loginow and E. H. Phelps, “Steels for seamless hydrogen pressure vessels,” Corrosion,31, No. 11, 404–412 (1975).

    Google Scholar 

  38. H. G. Nelson, D. P. Williams, and A. S. Tetelman, “Embrittlement of a ferrous alloy in a partially dissociated hydrogen environment,” Met. Trans.,2, No. 4, 953–959 (1971).

    Google Scholar 

  39. R. A. Oriani, “Hydrogen embrittle ment of steels,” in; Annual Review of Materials Science, Vol. 8, Palo Alto (1978), pp. 327–357.

    Google Scholar 

  40. J. R. Rice and M. A. Johnson, “The role of large crack tip geometry changes in plane strain fractures,” in: Inelastic Behavior of Solids, McGraw-Hill, New York (1970), pp. 641–672.

    Google Scholar 

  41. J. R. Rice, “Some mechanics research topics related to the hydrogen embrittlement of metals,” Corrosion,32, No. 1, 22–26 (1976).

    Google Scholar 

  42. V. A. Marichev, I. L. Rozenfel'd, and V. V. Lunin, “Subcritical crack growth in titanium alloys in air,” Zashch. Met., No. 1, 14–20 (1980).

    Google Scholar 

  43. A. E. Andreikiv, V. V. Panasyuk, and V. S. Kharin, “Theoretical aspects of the kinetics of hydrogen embrittlement of metals,” Fiz.-Khim. Mekh. Mater., No. 3, 3–23 (1978).

    Google Scholar 

  44. R. M. McMeeking, “Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture,” J. Mech. Phys. Solids,25, No. 5, 357–381 (1977).

    Google Scholar 

  45. P. G. Shewmon, Diffusion in Solids, McGraw-Hill (1963).

  46. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press (1959).

  47. W. Beck, P. K. Subramanyan, and F. S. Williams, “Interpretation of some hydrogen embrittlement problems,” Corrosion,27, 115–118 (1971).

    Google Scholar 

  48. H.-P. Van Leeuwen, “The kinetics of hydrogen embrittlement: a quantitative diffusion model,” Eng. Fract. Mech.,6, No. 1, 141–161 (1974).

    Google Scholar 

  49. T. Ekobori, Scientific Fundamentals of the Strength and Fracture of Materials [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  50. J. F. Knott, Fundamentals of Fracture Mechanics, Halsted Press (1974).

  51. S. Ochiani, S. Yoshinage, and Y. Kikuta, “Formulation of stress (strain)-induced diffusion of hydrogen and its solution by computer aided finite element method,” Trans. Iron Steel Inst. Jpn.,15, No. 10, 503–507 (1975).

    Google Scholar 

  52. O. N. Romaniv and A. N. Tkach, “Micromechanieal Simulation of the fracture toughness of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 5–22 (1977).

    Google Scholar 

  53. F. R. Coe and J. Moreton, “Estimation of diffusivity coefficients for hydrogen in ferrous materials,” Brit. Weld. J.,14, No. 6, 313–320 (1967).

    Google Scholar 

  54. N. Taniguchi and A. R. Troiano, “Stress corrosion cracking of 4340 steel in different environments,” Trans. Iron Steel Inst. Jpn.,9, No. 4, 306–312 (1969).

    Google Scholar 

  55. A. J. Kumnick and H. H. Johnson, “Hydrogen transport through annealed and deformed Armco iron,” Met. Trans.,5, No. 5, 1199–1206 (1974).

    Google Scholar 

  56. Tables of the Function of Errors and Its First 20 Derivatives [in Russian], Izd. Vychis. Tsentr. Akad. Nauk SSSR, Moscow (1965).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 17, No. 4, pp. 61–75, July–August, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V., Andreikiv, A.E. & Kharin, V.S. Theoretical analysis of crack growth in metals under the action of hydrogen. Mater Sci 17, 340–352 (1982). https://doi.org/10.1007/BF00723889

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723889

Keywords

Navigation