Journal of Superconductivity

, Volume 9, Issue 5, pp 539–543 | Cite as

On the dissipation process in Bi2Sr2Ca2Cu3O10 tapes and bulk samples with preferential grain orientation in zero external magnetic field

  • A. Crisan
  • L. Miu
  • S. Popa
  • G. Aldica
Article
  • 13 Downloads

Abstract

Current-voltage characteristics of Bi2Sr2Ca2Cu3O10 tapes and bulk samples with preferentially oriented crystallites have been measured in zero applied magnetic field and for temperatures close to the mean-field critical-temperature,Tc0. It was shown that the power-law dependence,V=AIa, valid for two-dimensional systems, does not correctly describe the data, which clearly indicate the existence of a finite critical-current density,Jc. The experimentalI-V curves are fitted quite well with the model which attributes the finite critical-current density to the coupling between the CuO2 double layers. It was found thatJc vanishes at a temperature value belowTc0. This behavior can result from the occurrence of vortex fluctuation-induced layer decoupling and/or from the contribution of entropy to the vortex unbinding process.

Key words

Tapes grain orientation dissipation critical-current density vortex-antivortex unbinding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Flükiger, B. Hensel, A. Jeremie, M. Decroux, H. Küpfer. W. Jahn, E. Seibt, W. Goldaker, Y. Yamada, and J. Q. Xu,Supercond. Sci. Technol. 5, S61 (1992).Google Scholar
  2. 2.
    L. Miu, G. Aldica, S. Popa, and A. Crisan, Proc. 1st Gen. Conf. of Balkan Phys. Union, Thessaloniki, Greece, K. M. Paraskevopoulos, ed., Vol. 2, p. 799 (1991).Google Scholar
  3. 3.
    L. Miu,Phys. Rev. B 45, 8142 (1992).Google Scholar
  4. 4.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973).Google Scholar
  5. 5.
    P. Minnhagen,Rev. Mod. Phys. 59, 1001 (1987).Google Scholar
  6. 6.
    A. M. Kadin, K. Epstein, and A. M. Goldman,Phys. Rev. B. 27, 6691 (1983).Google Scholar
  7. 7.
    D. R. Nelson and J. M. Kosterlitz,Phys. Rev. Lett. 39, 1201 (1977).Google Scholar
  8. 8.
    H. J. Jensen and P. Minnhagen,Phys. Rev. Lett. 66, 630 (1991).Google Scholar
  9. 9.
    V. Cataudella and P. Minnhagen,Physica C 166, 442 (1990).Google Scholar
  10. 10.
    T. Freltoft, H. J. Jensen, and P. Minnhagen,Solid State Commun. 78, 635 (1991).Google Scholar
  11. 11.
    A. K. Pradhan, S. J. Hazell, J. W. Hodby, C. Chen, Y. Hu, and B. M. Wanklyn,Phys. Rev. B 47, 11374 (1993).Google Scholar
  12. 12.
    G. Balestrino, A. Crisan, D. V. Livanov, E. Milani, M. Montuori, and A. A. Varlamov,Phys. Rev. B 51, 9100 (1995).Google Scholar
  13. 13.
    S. W. Pierson,Phys. Rev. Lett. 73, 2496 (1994); M. Friesen,Phys. Rev. B 51, 632 (1995); L. Miu, P. Wagner, U. Frey, A. Hadish, Dana Miu, and H. Adrian,Phys. Rev. B 52, 4553 (1995).Google Scholar
  14. 14.
    P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beck,Phys. Rev. B 42, 6249 (1990).Google Scholar
  15. 15.
    L. Miu,Phys. Rev. B 50, 13849 (1994).Google Scholar
  16. 16.
    G. Aldica, S. Mandache, and J. Jaklovsky,Rom. J. Phys. (in press).Google Scholar
  17. 17.
    A. Crisan, S. Popa, G. Aldica, and J. Jaklovszky,J. Supercond. 9, 295 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Crisan
  • L. Miu
  • S. Popa
  • G. Aldica

There are no affiliations available

Personalised recommendations