Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. W. Brown and J. Srawley, “Plane strain fracture toughness tests of high strength metallic materials,” ASTM, Philadelphia.

  2. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, “Experimental determination of the fracture toughness of constructional materials (recommendations on standardization of determination of fracture toughness),” Fiz.-Khim. Mekh. Mater., No. 2, 10–17 (1976).

    Google Scholar 

  3. V. V. Panasyuk, Limiting Equilibrium of Brittle Solids with Fractures, Magmt. Info. Serv. (1969).

  4. C. W. Hunter and J. A. Williams, “Fracture and tensile behavior of neutron irradiated A-533B pressure vessel steel,” Nucl. Eng. Design,17, No. 1, 131–148 (1971).

    Google Scholar 

  5. D. Brock, “The effect of inclusions on ductile fracture and fracture toughness,” Eng. Fract. Mech., No. 1, 55–66 (1973).

    Google Scholar 

  6. V. S. Ivanova, L. R. Botvina, and L. I. Nasaev, “Predicting the fracture toughness and other mechanical properties with the use of criteria of similarity,” in: The Fatigue and Fracture Toughness of Metals [in Russian], Nauka, Moscow (1974), pp. 3–35.

    Google Scholar 

  7. V. S. Ivanova and V. F. Terent'ev, The Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  8. Weiss Volker, “Material ductility and fracture toughness of metals,” in: Mechanical Behavior of Materials. Proceedings of the International Conference on the Mechanical Behavior of Materials, Kyoto, 1971, Vol. 1, pp. 458–474.

    Google Scholar 

  9. T. M. F. Ronald, J. A. Hall, and C. M. Pierce, “The usefulness of precracked Charpy specimens for fracture toughness screening of titanium alloys,” Met. Trans.,3, No. 4, 813–818 (1972).

    Google Scholar 

  10. W. G. Ferguson and M. N. Sargisson, “Fracture toughness of Comsteel En-25,” Eng. Fract. Mech.,5, No. 2, 499–508 (1973).

    Google Scholar 

  11. Hiroshi Mimura, Tetsu to hagané, J. Iron Steel Inst. Jpn.,58, No. 13, 1822–1831 (1972).

    Google Scholar 

  12. J. M. Barsom and J. V. Pellegrino, “Relationship between kIc and plane-strain tensile ductility and microscopic mode of fracture,” Eng. Eract. Mech.,5, No. 2, 209–211 (1973).

    Google Scholar 

  13. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, “Determining the fracture toughness KIc of constructional materials through their mechanical characteristics and structure parameters,” Fiz.-Khim. Mekh. Mater., No. 2, 120–122 (1977).

    Google Scholar 

  14. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Methods of Determining the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  15. J. F. Knott, Fundamentals of Fracture Mechanics, Halsted Press (1974).

  16. R. O. Ritchie, J. F. Knott, and Y. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Solids,21, 395–410 (1979).

    Google Scholar 

  17. O. N. Romaniv and A. N. Tkach, “Micromechanical simulation of the fracture toughness of metals and alloys,” Fiz.-Khim. Mekh. Mater., No. 5, 5–22 (1977).

    Google Scholar 

  18. J. Irwin and P. Paris, “An analysis of the elastoplastic condition at the tip of cracks with the use of R-curves,” in: Fracture Mechanics [Russian translation], No. 17, Mir, Moscow (1979), pp. 9–18.

    Google Scholar 

  19. I. P. Gnyp, “A criterion for determining the reliability of values of KIc,” Fiz.-Khim. Mekh. Mater., No. 1, 26–30 (1979).

    Google Scholar 

  20. I. P. Gnyp, B. K. Ganulich, and V. I. Pokhmurskii, “The question of the scale factor in fracture mechanics,” Fiz.-Khim. Mekh. Mater., No. 6, 65–69 (1980).

    Google Scholar 

  21. V. A. Kuz'menko, New Plans of the Deformation of Solids [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  22. N. A. Makhutov, The Resistance of Design Elements to Brittle Fracture [in Russian], Mashinostroenie, Moscow (1973).

    Google Scholar 

  23. E. A. Steigerwald and G. L. Hanna, “Influence of work-hardening exponent on the fracture toughness of high strength materials,” Trans. Metallurg. Soc. AIME,242, No. 2, 320–328 (1968).

    Google Scholar 

  24. P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic deformations in the vicinity of cracks and criteria of fracture,” Probl. Prochn., No. 2, 3–18 (1973).

    Google Scholar 

  25. S. Ya. Yarema and Z. M. Manyuk, “Plastic deformation at a circular crack in cylindrical samples at various temperatures and loading rates,” Fiz.-Khim. Mekh. Mater., No. 2, 15–18.

  26. G. N. Savin and V. I. Tul'chii, Handbook on Stress Concentration [in Russian], Vishcha Shkola, Kiev (1976).

    Google Scholar 

  27. V. V. Panasyuk, A. E. Andreikiv, S. E. Kovchik, I. N. Pan'ko, V. A. Zazylyak, and R. V. Nagirnyi, “The conditions of self-simulation of the prefailure zone in the vicinity of the contour of a macrocrack,” Fiz.-Khim. Mekh. Mater., No. 5, 23–27 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 18, No. 2, pp. 87–94, March–April, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnyp, I.P. A phenomenological approach to determining the crack resistance of materials. Mater Sci 18, 172–178 (1982). https://doi.org/10.1007/BF00723351

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723351

Keywords

Navigation