Skip to main content
Log in

Interrelationship of the parameters controlling the boundaries of the area of self-simulating crack growth on the fatigue failure curve

  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. S. Ivanova, “Determining cyclic fracture toughness under constions of similarity of the limiting condition,“ Fiz.-Khim. Mekh. Mater. No. 4, 77–86 (1978).

    Google Scholar 

  2. V. S. Ivanova, The Fracture of Metals [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  3. S. E. Gurevich and L. D. Edidovich, “The rate of crack propagation and the threshold values of the stress intensity factor during fatigue failure,” in: The Fatigue and Fracture Toughness of Metals [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. S. Ya. Yarema and S. I. Mikitishin, “An analytical description of the fatigue failure curve of materials,” Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).

    Google Scholar 

  5. S. Ya. Yarema, “Investigation of fatigue crack growth and kinetic failure curves,” Fiz.-Khim. Mekh. Mater., No. 4, 3–19 (1977).

    Google Scholar 

  6. L. I. Sedov, Methods of Similarity and Dimensionality in Mechanics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. V. S. Ivanova and V. F. Terent'ev, The Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  8. V. S. Ivanova, L. I. Maslov, and Z. D. Zotov, “A new approach to determination of fracture toughness under conditions of elastic—plastic behavior of materials,” Int. J. Fatigue,3, No. 4, 77–84 (1981).

    Google Scholar 

  9. L. V. Prokhodtseva and B. A. Drozdovskii, “Criteria of correctness of determination of fracture toughness KIc,” Zavod. Lab., No. 11, 1380–1384 (1975).

    Google Scholar 

  10. E. M. Morozov and G. P. Nikishkov, The Method of Finite Elements in Fracture Mechanics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  11. G. P. Cherepanov, Brittle Fracture Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  12. J. F. Knott, Fundamentals of Fracture Mechanics, Halsted Press (1974).

  13. S. E. Gurevich, “Certain aspects of fatigue fracture mechanics,” in: The Cyclic Fracture Toughness of Metals and Alloys [in Russian], Nauka, Moscow (1981), pp. 19–38.

    Google Scholar 

  14. S. E. Gurevich and Sh. Kapitan', “A new parameter for determining the conditions of fatigue crack growth in fracture toughness testing,” in: The Seventh All-union Conference on the Fatigue of Metals (Moscow, 23–25 November 1977): Summaries of Papers [in Russian], Izd. Inst. Metallurgii im. A. A. Baikova Akad. Nauk SSSR, Moscow (1977), p. 26.

    Google Scholar 

  15. V. S. Ivanova and L. I. Maslov, “Universal rupture strength curves of alloys of iron and titanium,” Fiz.-Khim. Mekh. Mater., No. 1, 30–36 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 18, No. 2, pp. 81–87, March–April, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, V.S., Maslov, L.I., Kunavin, S.A. et al. Interrelationship of the parameters controlling the boundaries of the area of self-simulating crack growth on the fatigue failure curve. Mater Sci 18, 166–171 (1982). https://doi.org/10.1007/BF00723350

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723350

Keywords

Navigation