Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshin, The Stress Distribution near Cracks in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  2. L. I. Sedov, Continuum Mechanics [in Russian], Vol. 2, Nauka, Moscow (1976).

    Google Scholar 

  3. G. P. Cherepanov and L. V. Ershov, Fracture Mechanics [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  4. V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Methods of Evaluating the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  5. T. Ekobori, Scientific Fundamentals of the Strength and Fracture of Materials [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  6. J. F. Nott, Fundamentals of Fracture Mechanics, Halsted Press (1974).

  7. A. E. Andreikiv, The Fracture of Quasibrittle Bodies with Cracks in the Complex Stressed Condition [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  8. L. T. Berezanitskii, M. V. Delyavskii, and V. V. Panasyuk, The Bending of Thin Plates with Crack Type Defects [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  9. O. N. Romaniv, The Fracture Toughness of Constructional Steels [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  10. Yu. N. Rabotnov, The Mechanics of a Solid Being Deformed [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  11. P. G. Miklyaev, G. S. Neshpor, and V. G. Kudryashov, The Kinetics of Fracture [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  12. V. S. Ivanova, The Fracture of Metals [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  13. A. A. Kaminskii, The Fracture Mechanics of Viscoelastic Bodies [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  14. E. M. Morozov and G. P. Nikishkov, The Finite Element Method in Fracture Mechanics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  15. A. Ya. Krasovskii, The Brittleness of Metals at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  16. D. Broek, Fundamentals of Fracture Mechanics [in Russian], Vysshaya Shkola, Moscow (1980).

    Google Scholar 

  17. P. M. Vitvitskii and S. Yu. Popina, The Strength and Criteria of Brittle Fracture of Randomly Defective Bodies [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  18. Methods and Means of Evaluating the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1981).

  19. N. A. Makhutov, Deformation Criteria of Fracture and Calculation of the Elements of Structures for Strength [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  20. V. T. Troshchenko, The Deformation and Fracture of Metals in Multicycle Loading [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  21. M. P. Savruk, Two-Dimensional Problems of Elasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  22. A. A. Griffith, “The phenomenon of rupture and flow in solids,” Phil. Trans. R. Soc., Ser. A,221, 163–198 (1920).

    Google Scholar 

  23. A. A. Griffith, “The theory of rupture,” in: Proceedings of the First International Congress on Applied Mechanics, Delft (1924), pp. 55–63.

  24. E. O. Orowan, “Fundamentals of brittle behavior of metals,” in: Fatigue and Fracture of Metals, Wiley, New York (1952), pp. 139–167.

    Google Scholar 

  25. G. R. Irwin, “Fracture dynamics,” in: Fracturing of Metals, ASM, Cleveland (1948), pp. 147–166.

    Google Scholar 

  26. R. A. Sack, “Extension of Griffith theory of rupture to three dimensions,” Proc. Phys. Soc.,58, 729–736 (1946).

    Google Scholar 

  27. V. I. Mossakovskii and M. G. Rybka, “An attempt to construct a theory for brittle materials based on the energy considerations of Griffith,” Prikl. Mat. Mekh., No. 2, 291–296 (1965).

    Google Scholar 

  28. E. M. Morozov, “Energy criteria of fracture for elastoplstic bodies,” in: Stress Concentration [in Russian], No. 3, Naukova Dumka, Kiev (1971).

    Google Scholar 

  29. G. P. Cherepanov, Brittle Fracture Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  30. G. I. Barenblatt, “The mathematical theory of equilibrium cracks formed in brittle fracture,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 3–56 (1961).

    Google Scholar 

  31. L. V. Ershov and D. D. Ivlev, “The conditions for quasibrittle fracture,” Prikl. Mat. Mekh., No. 3, 537–542 (1967).

    Google Scholar 

  32. V. V. Dudukalenko and N. V. Romalis, “The direction of crack growth under conditions of the plane stressed state,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 129–136 (1973).

    Google Scholar 

  33. G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract.,10, No. 3, 305–322 (1974).

    Google Scholar 

  34. L. T. Berezhnitskii and R. S. Gromyak, “Evaluating the limiting condition of the matrix in the vicinity of a sharp-ended hard inclusion,” Fiz.-Khim. Mekh. Mater., No. 2, 39–47 (1977).

    Google Scholar 

  35. V. V. Panasyuk, The Limiting Equilibrium of Brittle Bodies with Cracks [in Russian], Naukova, Dumka, Kiev (1968).

    Google Scholar 

  36. W. Brown and J. Srawley, “Plane strain fracture toughness tests of high strength metallic materials,” ASTM, Philadelphia.

  37. M. P. Savruk, “Constructing integral equations of two-dimensional problems of the theory of elasticity for a body with curved cracks,” Fiz.-Khim. Mekh. Mater., No. 6, 111–113 (1976).

    Google Scholar 

  38. M. F. Savruk, “A system of curved cracks in an elastic body with various boundary conditions on their edges,” Fiz.-Khim. Mekh. Mater., No. 6, 74–84 (1978).

    Google Scholar 

  39. M. P. Savruk, “A system of curved slits in an elastic body in antiplane strain,” Fiz.-Khim. Mekh. Mater., No. 4, 92–98 (1979).

    Google Scholar 

  40. M. P. Savruk, ”Plane problems of the theory of elasticity for a multibond area with holes and cracks,” Fiz-Khim. Mekh. Mater., No. 5, 51–56 (1980).

    Google Scholar 

  41. M. P. Savruk, “Fundamental boundary problems of static elastic sloping shells with curved cracks,” Fiz.-Khim. Mekh. Mater., No. 3, 50–59 (1981).

    Google Scholar 

  42. E. S. Folias, “The stresses in a cracked spherical shell,” Int. J. Fract. Mech.,1, No. 1, 20–46 (1965).

    Google Scholar 

  43. E. S. Folias, “An axial crack in a pressurized cylindrical shell,” Int. J. Fract.,1, No. 2, 104–114 (1965).

    Google Scholar 

  44. S. Ya. Yarema and M. P. Savruk, “The stresses in a cylindrical shell with an arbitrarily oriented crack,” Fiz.-Khim. Mekh. Mater., No. 3, 328–337 (1969).

    Google Scholar 

  45. S. Ya. Yarema and M. P. Savruk, “The influence of curvature on the stressed state of a shell with a crack,” Prikl. Mekh., No. 11, 32–40 (1970).

    Google Scholar 

  46. V. A. Osadchuk, “The method of distortions in problems of elastic equilibrium with slits (cracks),” Mathematical Methods and Physicomechanical Fields [in Russian], No. 10 (1979), pp. 27–50.

    Google Scholar 

  47. V. A. Osadchuk, “Criteria of longitudinal and transverse crack propagation in closed cylindrical shells,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 151–159 (1980).

    Google Scholar 

  48. A. E. Andreikiv, V. V. Panasyuk, and M. M. Stadnik, “The question of determining stress intensity factors in solids with cracks,” Probl. Prochn., No. 3, 45–50 (1974).

    Google Scholar 

  49. G. C. Sih, Handbook of Stress Intensity Factors, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem (1973).

    Google Scholar 

  50. G. C. Sih (ed.), Mechanics of Fracture. 1. Methods of Analysis and Solutions of Crack Problems, Noordhoff International Publishing, Leyden (1973).

    Google Scholar 

  51. V. V. Panasyuk, A. E. Andreikiv, and M. M. Stadnik, “Spatial problems of the theory of cracks. (A review). Fundamental mechanical concepts and mathematical methods in spatial problems of the theory of cracks,” Fiz.-Khim. Mekh. Mater., Pt. I, No. 4, 39–55; Pt. II, No. 5, 45–65; Pt. Ill, No. 6, 17–26 (1979).

    Google Scholar 

  52. L. I. Slepyan, The Mechanics of Cracks [in Russian], Sudostroenie, Leningrad (1981).

    Google Scholar 

  53. G. C. Sih, P. S. Paris, and G. R. Irwin, “On the cracks in rectilinearly anisotropic bodies,” Int. J. Fract. Mech.,1 No. 3, 189–203 (1965).

    Google Scholar 

  54. S. Ya. Yarema and G. S. Krestin, “The distribution of stresses at a crack tip in an anisotropic plate,” Fiz.-Khim. Mekh. Mater., No. 6, 714–719 (1969).

    Google Scholar 

  55. S. Ya. Yarema and G. S. Krestin, “The construction of limiting stress curves of anisotropic brittle bodies,” Fiz.-Khim. Mekh. Mater., No. 4, 420–423 (1969).

    Google Scholar 

  56. V. V. Panasyuk, L. T. Berezhnitskii, and V. M. Sadivskii, “The influence of material anisotropy on stress intensity factors near crack type defects,” Probl. Prochn., No. 4, 16–21 (1974).

    Google Scholar 

  57. L. T. Berezhnitskii and V. M. Sadivskii, “The stress distribution near elastic inclusions with cusps on the contour,” Fiz.-Khim. Mekh. Mater., No. 3, 47–54 (1976).

    Google Scholar 

  58. V. V. Panasyuk, L. T. Berezhnitskii, and V. M. Sadivskii, “Intensity factors and the stress distribution near sharp-angled elastic inclusions,” Dokl. Akad. Nauk SSSR,232, No. 2, 304–307 (1977).

    Google Scholar 

  59. M. M. Stadnik, “An approximate solution of the elastic problem for an isotropic medium with a system of arbitrarily arranged inclusions,” Fiz.-Khim, Mekh. Mater., No. 2, 63–66 (1980).

    Google Scholar 

  60. M. M. Stadnik and V. P. Silovanyuk, “Determining the stress concentration in an elastic body with a system of thin inclusions located in a single plane,” Fiz.-Khim. Mekh. Mater., No. 6. 88–92 (1977).

    Google Scholar 

  61. S. Ya. Yarema, “The stressed condition of disks with cracks recommended as samples for investigating the resistance of materials to crack development,” Fiz.-Khim. Mekh. Mater., No. 4, 25–39 (1976).

    Google Scholar 

  62. V. V. Panasyuk, A. E. Andreikiv, S. E. Kovchik, I. N. Pan'ko, V. A. Zazulyak, and R. V. Nagirnyi, “The conditions of autosimulation of the prefailure zone in the vicinity of a macrocrack contour,” Fiz.-Khim. Mekh. Mater., No. 5, 23–27 (1977).

    Google Scholar 

  63. Method Instructions. Calculations and Tests for Strength in Machine Building. Methods of Mechanical Tests. Determining the Characteristics of Fracture Toughness (Crack Resistance) in Static Loading [in Russian], Izd. Vsesoyuz. Nauch.-Issled. Inst. Norm. Mashinostr., Moscow (1978).

  64. Method Instructions. Calculations and Tests for Strength in Machine Building. Methods of Mechanical Tests of Metals. Determining the Characteristics of Fracture Toughness (Crack Resistance) in Dynamic Loading [in Russian], Izd. Gos. Komitet. Standart. SSSR, Vsesoyuz. Nauch.-Issled. Inst. Norm. Mashinostr., Moscow (1978).

  65. Method Instructions. Calculations and Tests for Strength in Machine Building. Methods of Mechanical Tests of Metals. Determining the Characteristics of Resistance to Crack Development (Crack Resistance) in Cyclic Loading [in Russian], Izd. Vsesoyuz. Nauch.-Issled. Inst. Norm. Mashinostr., Gos. Komitet. Standart. SSSR, Fiz.-Mekh. Inst. Akad. Nauk UkrSSR. L'vov (1979).

  66. M. Ya. Leonov, A Simplified Model of a Brittle Body. Information Bulletin No. 1 [in Russian], Nauch. Sov. Probl. Nauch. Osn. Prochn. i Plastichn., Vsesoyuz. Inst. Nauch. Tekh. Inf. Akad. Nauk SSSR (1960).

  67. V. V. Panasyuk, “A theory of crack propagation in deformation of a brittle body,” Dop. Akad. Nauk Ukr.RSR, No. 9, 1185–1189 (1960).

    Google Scholar 

  68. A. A. Wells, “The application of fracture mechanics at and beyond general yielding,” Brit. Weld. J.,10, No. 11, 563–570 (1963).

    Google Scholar 

  69. P. M. Vitvitskii, V. V. Panasyuk, and S. Y. Yarema, “Plastic deformations in the vicinity of cracks and criteria of failure (a review),” Probl. Prochn., No. 2, 3–18 (1973).

    Google Scholar 

  70. V. Z. Parton and E. M. Morozov, The Mechanics of Elastoplastic Fracture [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  71. A. E. Andreikiv, “A calculation model of local fracture of elastoplastic bodies with cracks,” in: Methods and Means of Evaluating the Crack Resistance of Constructional Materials [in Russian], Naukova Dumka, Kiev (1981), pp. 63–72.

    Google Scholar 

  72. S. N. Zhurkov, “The kinetic concept of the strength of solids,” Vestn. Akad. Nauk SSSR, No. 3, 46–52 (1968).

    Google Scholar 

  73. G. M. Bartenev, The Structure and Mechanical Properties of Inorganic Glasses [in Russian], Stroiizdat, Moscow (1966).

    Google Scholar 

  74. G. I. Barenblatt, V. M. Entov, and R. L. Slaganik, “The kinetics of crack propagation. General concepts. Cracks close to equilibrium,” Mekh. Tverd. Tela, No. 5, 82–92 (1966).

    Google Scholar 

  75. V. V. Kostrov, L. V. Nikitin, and L. M. Flitman, “Crack propagation in viscoelastic bodies,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 7, 20–35 (1970).

    Google Scholar 

  76. V. V. Novozhilov, “A necessary and sufficient criterion of brittle strength,” Prikl. Mat. Mekh., No. 2, 212–222 (1969).

    Google Scholar 

  77. V. V. Novozhilov, “The fundamentals of equilibrium cracks in brittle bodies,” Prikl. Mat. Mekh., No. 5, 797–812 (1969).

    Google Scholar 

  78. V. S. Ivanova and V. F. Terent'ev, The Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  79. “The Fourth International Conference on Fracture,” Fiz.-Khim. Mekh. Mater., No. 1, 118–121 (1978).

  80. “At the Fifth International Conference on Fracture,” Fiz.-Khim. Mekh. Mater., No. 4, 125–129 (1981).

  81. A. E. Andreikiv, “A calculation model for determining the period of origin of a fatigue macrocrack.” Fiz.-Khim. Mekh. Mater., No. 6, 27–30 (1976).

    Google Scholar 

  82. P. C. Paris, M. P. Gomes, and W. E. Anderson, “A rational analytic theory of fatigue,” The Trend in Engineering,13, 54–61 (1961).

    Google Scholar 

  83. S. E. Gurevich and L. D. Edidovich, “The rate of crack propagation and the threshold values of the stress intensity factor in fatigue loading,” in: The Fatigue and Fracture Toughness of Metals [in Russian], Nauka, Moscow (1974), pp. 36–78.

    Google Scholar 

  84. S. Ya. Yarema, “An investigation of fatigue crack growth and kinetic fatigue loading curves,” Fiz.-Khim. Mekh. Mater., No. 4, 3–22 (1977).

    Google Scholar 

  85. O. N. Romaniv, “Structural fracture mechanics — a new and promising direction in the problem of the failure of metals,” Fiz.-Khim. Mekh. Mater., No. 4, 28–45 (1981).

    Google Scholar 

  86. D. W. Hoeppner and W. E. Krupp, “Prediction of component life by application of fatigue crack growth knowledge,” Eng. Fract. Mech.,6, No. 1, 47–70 (1974).

    Google Scholar 

  87. S. Ya. Yarema and S. I. Mikitishin, “An analytical description of the fatigue failure curves of materials,” Fiz.-Khim. Mekh. Mater., No. 6, 47–54 (1975).

    Google Scholar 

  88. S. Ya. Yarema, “The methodology of determining the characteristics of crack development resistance (crack resistance) of materials in cyclic loading,” Fiz.-Khim. Mekh. Mater., No. 4, 100–110 (1981).

    Google Scholar 

  89. S. Ya. Yarema, “The correlation of the Paris equation parameters and the cyclic crack resistance characteristics of materials,” Probl. Prochn., No. 9, 20–28 (1981).

    Google Scholar 

  90. A. Baus, J. C. Charbonnier, H. P. Lieurade, et al., “Etude par la mécanique de la rupture, de la ténacité, de la fissuration en fatigue et de la fissuration en corrosion sous contrainte d'aciers à tres haute résistance,” Circ. Inform. Tech. Centre Doc. Sider.,33, No. 3, 1703–1774 (1976).

    Google Scholar 

  91. S. Ya. Yarema, V. V. Panasyuk, and V. V. Popovich, A Method of Cyclic Crack Resistance Testing of Metals [in Russian], Izd. Fiz.-Mekh. Inst. Akad. Nauk UkrSSR, L'vov (1978) (Preprint No. 9).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From the materials of a paper at the Fifth All-union Contress on Theoretical and Applied Mechanics.

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 18, No. 2, pp. 7–27, March–April, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panasyuk, V.V. Modern problems of fracture mechanics. Mater Sci 18, 101–119 (1982). https://doi.org/10.1007/BF00723340

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723340

Keywords

Navigation