Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. P. A. Rebinder and E. D. Shchukin, “Surface phenomena in solids during the deformation and failure,” Usp. Fiz. Nauk,108, No. 1, 3–42 (1972).

    Google Scholar 

  2. E. D. Shchukin, “Environmentally induced lowering of surface energy and the mechanical behavior of solids,” in: Surface Effects in Crystal Plasticity, R. M. Latanision and I. T. Fourie (eds.), Noordhoff Publishers, Leyden (1977), pp. 701–736.

    Google Scholar 

  3. E. D. Shchukin and V. S. Yushchenko, “Relationship of selectivity of adsorption reduction of strength under the effect of melts with interatomic interaction,” Fiz.-Khim. Mekh. Mater., No. 2, 133–142 (1966).

    Google Scholar 

  4. V. S. Yushchenko, V. M. Yakovlev, Z. M. Polukarova, et al., “Estimation of the heat of mixing in binary metallic systems taking into account the contribution of the covalent bond,” Zh. Fiz. Khim.,61, No.9, 2338–2343 (1987).

    Google Scholar 

  5. E. D. Shchukin, V. I. Savenko, and L. A. Kochanova, “Surface and environment effects in the elastic-plastic-fracture transitions in metal crystals,” Physical Chemistry of the Solid State: Applications to Metals and Their Compounds, P. Lacombe (ed.), Amsterdam (1984), pp. 47–63.

  6. A. R. C. Westwood and N. S. Stoloff (eds.), Environment-Sensitive Mechanical Behavior, Gordon and Breach, New York (1966).

    Google Scholar 

  7. R. M. Latanision and I. T. Fourie (eds.), Surface Effects in Crystal Plasticity, Noordhoff Publishers, Leyden (1977).

    Google Scholar 

  8. R. M. Latanision and J. R. Pickens (eds.), Atomistics of Fracture, Plenum Press, New York (1983).

    Google Scholar 

  9. A. R. C. Westwood, I. S. Ahearn and I. I. Mills, “Developments in the theory and application of chemomechanical effects,” Colloids and Surfaces, No. 2, 1–35 (1981).

    Google Scholar 

  10. V. S. Yushenko and E. D. Shchukin, “Molecular-dynamic modeling in examining mechanical properties,” Fiz.-Khim. Mekh. Mater., No. 4, 46–61 (1981).

    Google Scholar 

  11. E. D. Shchukin and V. S. Yushchenko, “Molecular dynamics simulation of mechanical behavior,” J. Mater. Sci.,16, No. 2, 313–330 (1981).

    Google Scholar 

  12. E. D. Shchukin and L. Ya. Margolis, “Mechanism of failure of a catalyst as a means of the mutual effect between the solid phase and the reaction medium,” Poverkhnost, No. 8, 1–8 (1982).

    Google Scholar 

  13. E. D. Shchukin, “Interactions Between Adsorbed Species and Strained Crystals,” in: Atomistics of Fracture, R. M. Latanision and J. R. Pickens (eds.), Plenum Press, New York (1983), pp. 421–423.

    Google Scholar 

  14. N. D. Chuvylkin, G. M. Zhidomirov, and V. B. Kazansky, “Semiempirical quantum chemical calculation of intermediate complexes in catalytic reactions,” J. Cat.,38, 214–219 (1975).

    Google Scholar 

  15. B. E. Krasyuk and E. V. Polianchik, “Quantum chemical calculations of the effect of deformation of molecules on the rate of the reaction of separation of the hydrogen atom by nitrogen,” Dokl. Akad. Nauk SSSR,304, No. 5, 1177–1181 (1989).

    Google Scholar 

  16. V. I. Kopylets and V. I. Pokhmurskii, “Quantum chemical calculations of chemisorption on the surface of metallic clusters,” Fiz.-Khim. Mekh. Mater., No. 4, 24–29 (1989).

    Google Scholar 

  17. G. S. Painter and F. W. Averill, “Effects of segregation on grain boundary cohesion: A density-functional cluster model of boron and sulfur in nickel,” Phys. Rev. Lett.,58, No. 3, 234–237 (1987).

    Google Scholar 

  18. G. W. Fernando and J. W. Wilkins, “Linearized augmented plane-wave study of chemisorption of sulfur on Fe(OO1),” Phys. Rev. B: Solid State,33, No. 6, 3709–3716 (1986).

    Google Scholar 

  19. M. E. Eberhart and R. M. Latanision, “The electrochemistry and solid state chemistry of intergranular hydrogen embrittlement,” in: Modeling Environmental Effects on Crack Growth Processes: Proceedings of Symposium, R. H. Jones and W. W. Gerberich (eds.), Canada (1985), pp. 125–136.

  20. M. E. Eberhart, “Quantum mechanics and fracture,” Adv. Mech. and Phys. Surfaces, Vol. 3, Chur (1983), pp. 71–108.

    Google Scholar 

  21. S. Fudzinaga, Methods of Molecular Orbitals [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  22. T. Clark, Computer Chemistry [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  23. M. King and M. J. Dupuis, Rys. Nat. Resour. Comput. Chem. Software Cat. Vol. 1. Prog. N QHOS HOND05 (1980).

  24. A. I. Kitaigorodski, P. M. Zorkii, and V. K. Bel'skii, The Structure of Organic Matter [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  25. A. C. Legon and D. J. Millen, “Determination of properties of hydrogen-bonded dimers by rotational spectroscopy and a classification of dimer geometries,” Faraday Disc Chem. Soc.,73, 71–87 (1982).

    Google Scholar 

  26. P. W. Fowler and P. Tole, “Models for hydrogen-bonded-systems: Ethylene...HF allene. HF and cumulen...HF,” J. Mol. Sruct.,189, 121–128 (1988).

    Google Scholar 

  27. R. K. Gasavi and O. P. Strausz, “A molecular orbital study of triplet state [BeC2H4] exciplexes and their reaction hypersurfaces,” J. Phys. Chem.,91, No. 2, 283–297 (1987).

    Google Scholar 

  28. E. Honegger, “The effect of geometrical relaxation on the rotational barrier of ethane,” J. Mol. Struct. Theochem.,187, 261–269 (1989).

    Google Scholar 

  29. D. Barton and W. D. Ollis (eds.), General Organic Chemistry [Russian translation], Vol. 1, Khimiya, Moscow (1981), pp. 158; 511–522.

    Google Scholar 

  30. W. J. Hehre, “Theoretical approaches to the structure of carbocations,” Accounts Chem. Res.,8, No. 11, 369–376 (1975).

    Google Scholar 

  31. E. D. Shchukin, “Reciprocity of the processes of rupture and rearrangement of interatomic bonds in the solid phase and molecules of the environment during catalysis,” in: Catalysis Mechanisms [in Russian], Vol. 2, Nauka, Novosibirsk (1984), pp. 142–154.

    Google Scholar 

  32. S. Z. Roginskii, I. I. Tret'yakov, and A. B. Shekhter, “Catalytic corrosion,” Dokl. Akad. Nauk SSSR,91, 881–884 (1953).

    Google Scholar 

  33. G. K. Boreskov, “Variation of the properties of a solid catalyst under the effect of a reactive medium,” Kinetika Kataliz,21, 5–16 (1981).

    Google Scholar 

  34. Ya. E. Geguzin, N. I. Girenkova, Yu. S. Kaganovskii, et al., “Effect of the catalysis process on the diffusion transfer of mass along the surface of the catalyst,” in: Nonstationary Processes in Catalysis, Proceedings of an All-Union Conference, Vol. 1, Institute of Catalysis, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1979), pp. 138–140.

    Google Scholar 

  35. S. I. Kontorovich, T. P. Ponomareva, Ya. E. Geguzin, et al., “Self-diffusion transfer of mass along the surface of a catalyst,” Poverkhnost, No. 1, 111–114 (1983).

    Google Scholar 

  36. E. D. Shchikin, S. I. Kontrovich, and M. V. Dukarevich, “The adsorption reduction of the strength of the magnesium oxide catalyst during catalysis,” Dokl. Akad. Nauk SSSR,175, No. 4, 882–884 (1967).

    Google Scholar 

  37. S. F. Suzdal'tseva, E. I. Skvortsova, L. Ya. Margolis, et al., “Effect of chemisorption on the strength of dispersed porous structures of catalysts,” Dokl. Akad. Nauk SSSR,201, No. 2, 415–418 (1974).

    Google Scholar 

  38. T. Fisher, “Catalysis and surfaces,” J. Vac. Sci. Technol.,11, No. 1, 252–260 (1974).

    Google Scholar 

  39. E. D. Shchukin, “Some problems of physicochemical theory of the strength of dispersed structures,” in: Physicochemical Mechanics and Lyophilic Nature of Dispersed Systems [in Russian], No. 13, Nauk, Kiev (1981), pp. 46–53.

    Google Scholar 

  40. V. A. Marichev and I. L. Rozenfel'd, Itogi Nauki Tekh, Vol. 7, VINITI, Moscow (1978), p. 5.

    Google Scholar 

  41. E. A. Nachev, Chemoisorption of Organic Matter on Oxides and Metals [in Russian], Vishcha Shkola, Khar'kov (1989).

    Google Scholar 

  42. I. V. Berestetskaya and P. Yu. Butyagin, “Mechanical activation of the surface of magnesium oxide,” Dokl. Akad. Nauk SSSR, 361–365 (1981).

  43. V. V. Boldyrev, “Problems of mechanochemistry of inorganic matter,” Izv. Akad. Nauk SSSR, Ser. Khim. Nauk, No. 7, 3–8 (1982).

    Google Scholar 

  44. O. N. Romaniv, “Relationships governing the growth of cracks in corrosion fatigue of steels,” Fiz.-Khim. Mekh. Mater., No. 3, 14–29 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Meckhanika Materialov, Vol. 27, No. 4, pp. 7–15, July–August, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomareva, T.P., Yushchenko, V.S. & Shchukin, E.D. Quantum-chemical calculations of mechanical rupture of the interatomic bond and the effect of environment. Mater Sci 27, 335–342 (1992). https://doi.org/10.1007/BF00723220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723220

Keywords

Navigation