Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. T. Kazanawa and S. Machida, “On the J-integral fracture criterion,” J. Eng. Univ. Tokio,B33, No. 4, 503–517 (1976).

    Google Scholar 

  2. J. H. Underwood, “jic test results from two steels,” in: Cracks and Fracture. ASTM STP 601, Philadelphia (1976), pp. 312–329.

  3. A. H. Purcell and J. Weertman, “Transmission electron microscopy of the crack tip region of fatigued copper single crystals,” Met. Trans.,4, No. 1, 349–353 (1973).

    Google Scholar 

  4. J. C. Grosskreutz and G. G. Shaw, “Fine subgrain structure adjacent to fatigue cracks,” Acta Met.,20, No. 4, 523–528 (1972).

    Google Scholar 

  5. V. S. Ivanova and V. F. Terent'ev, The Nature of the Fatigue of Metals [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  6. J. Awatani, K. Katagiri, and T. Shiraishi, “Microstructures around the tips of fatigue cracks growing at a low rate in iron,” Met. Trans.,7A, No. 6, 807–810 (1976).

    Google Scholar 

  7. J. Awatani, K. Katagiri, and H. Nakai, “Dislocation structures around propagating fatigue cracks in iron,” Met. Trans.,9A, No. 1, 111–116 (1978).

    Google Scholar 

  8. C. Q. Bowles and D. B. Broek, “On the formation of fatigue striation,” Int. J. Fract. Mech.,8, No. 1, 75–85 (1972).

    Google Scholar 

  9. V. M. Goritskii, “The evolution of the dislocation structure of iron in cyclic loading,” Author's Abstract of Candidate in Technical Sciences Thesis, Moscow (1973).

  10. C. Laird, “Effect of dislocation substructures on fatigue fracture,” Met. Trans.,8A, No. 6, 851–860 (1977).

    Google Scholar 

  11. J. D. C. Groom and J. F. Knott, “Cleavage fracture in prestrained mild steel,” Met. Sci.,9, No. 8, 390–400 (1975).

    Google Scholar 

  12. R. L. Aghan and J. Nutting, “Structure and properties of low-carbon steel after deformation to high strains,” Met. Sci.,14, No. 6, 233–237 (1980).

    Google Scholar 

  13. A. J. McEvely and R. C. Boettner, “On fatigue crack propagation in f. c. c. metals,” Acta Met.,11, 725–743 (1963).

    Google Scholar 

  14. V. M. Goritskii and V. F. Terent'ev, The Structure and Fatigue Fracture of Metals [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  15. A. Ya. Krasovskii, O. P. Ostash, V. A. Stepananko, and S. Ya. Yarema, “The influence of low temperatures on the rate and microfractographic features of the development of a fatigue crack in low-carbon steels,” Probl. Prochn., No. 4, 74–78 (1977).

    Google Scholar 

  16. R. O. Ritchie and J. F. Knott, “Microcleavage cracking during fatigue crack propagation in low-strength steel,” Mat. Sci. Eng.,14, No. 1, 7–14 (1974).

    Google Scholar 

  17. G. T. Hahn, R. G. Hoagland, and A. R. Rosenfield, “Local yield attending fatigue crack growth, Met. Trans.,3, No. 5, 1189–1202 (1972).

    Google Scholar 

  18. O. N. Romaniv, A. N. Tkach, and A. S. Krys'kiv, “Some cases of different structural sensitivity of fracture toughness and impact strength,” Fiz.-Khim. Mekh. Mater., No. 6, 64–71 (1978).

    Google Scholar 

  19. R. O. Ritchie, B. Francis, and L. Server, “Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures,” Met. Trans.,7A, No. 6, 831–838 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 17, No. 2, pp. 57–66, March–April, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaniv, O.N., Shur, E.A., Tkach, A.N. et al. The kinetics and mechanism of fatigue crack growth in iron. Mater Sci 17, 158–166 (1981). https://doi.org/10.1007/BF00722905

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00722905

Keywords

Navigation