Skip to main content
Log in

The kinetics of the electrode potential in corrosion fatigue and corrosion-fatigue crack growth in α− and (α + β)-titanium alloys in a sodium chloride solution

  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. M. Hempel, “Über das Dauerchwingverhalten von Titan und seinen Legierungen,” Draht,17, No. 4, 206–218 (1966).

    Google Scholar 

  2. F. Todt, Corrosion and Protection from Corrosion [in Russian], Khimiya, Leningrad (1966).

    Google Scholar 

  3. V. V. Rybin, Yu. P. Sirin, B. B. Chechulin, N. N. Vasserman, A. I. Yamshchikova, and M. S. Nemanov, “Peculiarities of the influence of a corrosive medium on the fatigue strength of VT6 titanium alloy,” Fiz.-Khim. Mekh. Mater., No. 4, 35–38 (1975).

    Google Scholar 

  4. V. A. Gladkovskii, M. S. Nemanov, and Yu. P. Sirin, “An investigation of the corrosion fatigue strength of titanium alloyed with aluminum,” in: The Dynamics and Strength of Mechanical Systems [in Russian], No. 102, Perm' (1971), pp. 117–123.

    Google Scholar 

  5. Yu. A. Shamanin, “The corrosion fatigue strength of certain titanium alloys,” in: Proceedings of the Leningrad Shipbuilding Institute [in Russian], No. 81, Leningrad (1972), pp. 109–112.

    Google Scholar 

  6. A. V. Boltarovich, V. I. Pokhmurskii, and É. M. Gutman, “Corrosion under stress of VT3-1 titanium alloy,” Fiz.-Khim. Mekh. Mater., No. 4, 499–502 (1965).

    Google Scholar 

  7. N. M. Pul'tsyn, Titanium Alloys and Their Use in Machine Building [in Russian], Mashgiz, Moscow-Leningrad (1962).

    Google Scholar 

  8. V. I. Pokhmurskii, N. Ya. Yaremchenko, O. S. Kalakhan, and A. M. Prishlyak, “Peculiarities of the fatigue failure of titanium and its alloys in a sodium chloride solution,” Fiz.-Khim. Mekh. Mater., No. 6, 86–88 (1979).

    Google Scholar 

  9. M. O. Levitskii, “A unit for investigating the growth of fatigue cracks with a constant stress intensity factor,” Information Letter No. 37 [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  10. M. Paul and H. Weiland, “Potentialänderungen bei Verformungsvorgänge an Metallen,” Electrochem. Acta,14, No. 10, 1025–1043 (1969).

    Google Scholar 

  11. G. V. Karpenko, L. N. Petrov, and Yu. I. Babei, “The influence of deformation on the electrochemical properties of steel in hydrochloric acid,” Fiz.-Khim. Mekh. Mater., No. 3, 98–100 (1970).

    Google Scholar 

  12. N. D. Tomashov and G. P. Chernova, Corrosion and Corrosion-Resistant Alloys [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  13. G. V. Karpenko, V. I. Pokhmurskii, A. M. Krokhmal'nyi, and V. B. Dalisov, “The interrelationship of the corrosion fatigue process of metals and the change in their total electrode potentials,” Fiz.-Khim. Mekh. Mater., No. 6, 71–73 (1971).

    Google Scholar 

  14. A. V., Kobzaruk and G. V. Karpenko, “The kinetics of the steady electrode potential of steel samples in sea water in low-cycle loading,” Fiz.-Khim. Mekh. Mater., No. 1, 75–80 (1978).

    Google Scholar 

  15. A. P. Batov, “The role of electrochemical factors in the corrosion-fatigue fracture process of an aluminum alloy,” Fiz.-Khim. Mekh. Mater., No. 3, 18–22 (1970).

    Google Scholar 

  16. N. D. Tomashov and D. M. Al'tovskii, The Corrosion and Protection of Titanium [in Russian], Mashgiz, Moscow (1963).

    Google Scholar 

  17. G. G. Kossyi, V. M. Novakovskii, and Ya. M. Kolotyrkin, “Excess oxygen in the oxide film on passive titanium,” Zashch. Met.,6, No. 3, 317–320 (1970).

    Google Scholar 

  18. A. M. Sukhotin and L. I. Tungusova, “The passivity of titanium and the electrochemical behavior of T101.99,” Zashch. Met.,8, No. 3, 259–263 (1971).

    Google Scholar 

  19. N. D. Tomashov, Yu. S. Ruskol, G. A. Ayuyan, Yu. M. Ivanov, G. M. Glavnik, and R. I. Nazarova, “The influence of alloying elements on the corrosion behavior of titanium,” Zashch. Met.,9, No. 1, 10–16 (1973).

    Google Scholar 

  20. S. N. Mandzhgaladze, Dzh. N. Pirtskhalava, É. A. Marchiani, M. P. Mikaberidze, F. N., Tavadze, I. I. Kornilov, and T. T. Nartova, “The influence of iron, chromium, aluminum, and silicon on the corrosion and electrochemical properties of titanium,” in: Titanium, Metallurgy and Technology [in Russian], Vol. 2, Vses. Inst. Leg. Splav., Moscow (1978), pp. 93–98.

    Google Scholar 

  21. Titanium Alloys for New Technology [in Russian], Nauka, Moscow (1968).

  22. M. N. Fokin, Yu. S. Ruskol, and A. V. Mosolov, Titanium and Its Alloys in the Chemical Industry [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  23. T. R. Beck, “Electrochemical models for SCC of titanium,” in: The Theory of Stress Corrosion Cracking in Alloys (ed. by J. C. Sully), Brussels (1971), pp. 64–85.

  24. T. R. Beck, “Reactions and kinetics of newly generated titanium surfaces and relevance to stress corrosion cracking,” Corrosion,30, No. 11, 408–411 (1974).

    Google Scholar 

  25. B. B. Chechulin, S. S. Ushakov, I. N. Razuvaeva, and V. N. Gol'dfain, Titanium Alloys in Machine Building [in Russian], Mashinostroenie, Leningrad (1977).

    Google Scholar 

  26. K. Beavers, “Some features of fatigue crack growth in metals and alloys,” in: The Mechanics of Fracture. The Fracture of Structures [Russian translation], No. 20, Mir, Moscow (1980), pp. 51–81.

    Google Scholar 

  27. S. E. Gurevich and L. D. Edidovich, “An investigation of the resistance to crack development of titanium alloys in air and in sea water,” in: Titanium. Metallurgy and Technology [in Russian], Vol. 1, Vses. Inst. Leg. Splav., Moscow (1977), pp. 471–476.

    Google Scholar 

  28. D. Dawson and R. Pelloux, “Corrosion fatigue crack growth of titanium alloys in aqueous environments,” Met. Trans.,5, No. 3, 723–731 (1974).

    Google Scholar 

  29. I. L. Rozenfel'd, K. I. Afanas'ev, and V. A. Marichev, “An investigation of the electrochemical properties of freshly formed surfaces of metals in electrolyte solutions,” Fiz.-Khim. Mekh. Mater., No. 6, 49–54 (1980).

    Google Scholar 

  30. P. F. Chester and D. H. Brathurst, “Electrolytically induced conductivity in rutile,” Nature,199, No. 4898, 1056–1057 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 17, No. 2, pp. 3–10, March–April, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokhmurskii, V.I., Kalakhan, O.S. The kinetics of the electrode potential in corrosion fatigue and corrosion-fatigue crack growth in α− and (α + β)-titanium alloys in a sodium chloride solution. Mater Sci 17, 107–113 (1981). https://doi.org/10.1007/BF00722893

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00722893

Keywords

Navigation