Journal of Superconductivity

, Volume 8, Issue 4, pp 499–502 | Cite as

What does instrinsic Josephson coupling say about the pairing symmetry in the cuprates?

  • R. J. Radtke
  • C. N. Lau
  • K. Levin


Measurements of the c-axis properties of the cuprate superconductors show anomalous behavior in both normal and superconducting states. In particular, there is strong evidence that pairs of CuO2 planes in neighboring unit cells act as Josephson junctions below the critical temperatureTc. We present a theory based on incoherent transport along the c-axis which naturally reproduces the anisotropic normal-state resistivity and the superconducting-state Josephson coupling. Applying this theory to YBa2Cu3O7-ς (YBCO), we make quantitative predictions for the strength and temperature dependence of the Josephson coupling as well as the variation ofTc with disorder. Beyond the expected low-temperature behavior, the Josephson critical current does not make a clean separation between s- and d-wave superconductors, but the disorder-inducedTc variation does. Further experimental and theoretical work along these lines may therefore help determine the order parameter symmetry in the cuprates.

Key words

c-axis Josephson coupling order-parameter symmetry Tc suppression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see S. L. Cooper and K. E. Gray, inPhysical Properties of High-Temperature Superconductors IV, D.M. Ginsberg, ed. (World Scientific, Singapore, 1994).Google Scholar
  2. 2.
    B. W. Veal, A. P. Paulikas and P. Kostic, unpublished.Google Scholar
  3. 3.
    R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller,Phys. Rev. Lett. 68, 2394 (1992); R. Kleiner and P. Müller,Phys. Rev. B 49, 1327 (1994).Google Scholar
  4. 4.
    N. Kumar and A. M. Jayannavar,Phys. Rev. B 45, 5001 (1992).Google Scholar
  5. 5.
    A. J. Leggett,Braz. J. Phys. 22, 129 (1992).Google Scholar
  6. 6.
    M. J. Graf, D. Rainer, and J. A. Sauls,Phys. Rev. B 47, 12089 (1993) and unpublished.Google Scholar
  7. 7.
    A. G. Rojo and K. Levin,Phys. Rev. B 48, 16861 (1993).Google Scholar
  8. 8.
    R. J. Radtke, Ph.D. Thesis, The University of Chicago, Chicago, Illinois, 1994; R. J. Radtke, C. N. Lau, and K. Levin, unpublished.Google Scholar
  9. 9.
    V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486 (1963);ibid. 11, 104 (1963).Google Scholar
  10. 10.
    L. N. Bulaevskii,Sov. Phys.-JETP 37, 1133 (1973); J. R. Clem,Physica (Amsterdam) 162–164C, 1137 (1989).Google Scholar
  11. 11.
    T. Shibauchi, H. Kitano, K. Uchinokura, A. Maeda, T. Kimura, and K. Kishio,Phys. Rev. Lett. 72, 2263 (1994).Google Scholar
  12. 12.
    Jian Mao, D. J. Wu, J. L. Peng, R. L. Greene, and S. M. Anlage,Phys. Rev. B, in press.Google Scholar
  13. 13.
    P. W. Anderson,J. Phys. Chem. Solids 11, 26 (1959).Google Scholar
  14. 14.
    A. J. Millis, S. Sachdev, and C. M. Varma,Phys. Rev. B 37, 4975 (1988).Google Scholar
  15. 15.
    R. J. Radtke, K. Levin, H.-B. Schüttler, and M. R. Norman,Phys. Rev. B 48, 653 (1993).Google Scholar
  16. 16.
    A. G. Sun, L. M. Paulius, D. A. Gajewski, and M. B. Maple,Phys. Rev. B 50, 3266 (1994).Google Scholar
  17. 17.
    J. Giapintzakis, D. M. Ginsberg, M. A. Kirk, and S. Ockers, unpublished.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. J. Radtke
    • 1
  • C. N. Lau
    • 2
  • K. Levin
    • 2
  1. 1.Department of PhysicsUniversity of MarylandCollege Park
  2. 2.Department of Physics and the James Franck InstituteThe University of ChicagoChicago

Personalised recommendations