Elastic problem for a space with two spheroidal inclusions in a field of uniaxial tension

  • M. M. Stadnik
  • V. P. Silovanyuk


Uniaxial Tension Elastic Problem Spheroidal Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. Eschelbi, The Continual Theory of Dislocations [Russian translation], IL, Moscow (1963).Google Scholar
  2. 2.
    Yu. N. Podil'chuk, Spatial Problems of the Theory of Elasticity [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  3. 3.
    I. A. Kunin and É. G. Sosnina, “The stress concentration at an ellipsoidal inhomogeneity in an anisotropic elastic medium,” Prikl. Mat. Mekh.,37, No. 2, 306–315 (1973).Google Scholar
  4. 4.
    Z. A. Moschovidis and T. Mura, “Two ellipsoidal inhomogeneities by the equivalent inclusion method,” Trans. ASME, J. Appl. Mech., Ser. E,42, No. 4, 847–852 (1975).Google Scholar
  5. 5.
    W. E. Warren, “Stress concentrations between two rigid spheres,” Trans. ASME, J. Appl. Mech., Ser. E,44, No. 2, 340–342 (1977).Google Scholar
  6. 6.
    Keji Mikata, “The stresses in an elastic body containing an infinite series of spherical inclusions,” Khatinokhe Koge Kotosemmon Gakko Kne, Res. Repts. Hachinohe Tech. Coll., No. 8, 26–31 (1973).Google Scholar
  7. 7.
    M. M. Stadnik and V. P. Silovanyuk, “Determination of the stress concentration in an elastic body with a system of fine inclusions located in a single plane,” Fiz.-Khim. Mekh. Mater., No. 6, 88–92 (1977).Google Scholar
  8. 8.
    V. V. Panasyuk, A. E. Andreikov, and M. M. Stadnik, “The elastic equilibrium of an unlimited body with a fine inclusion,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 637–640 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. M. Stadnik
    • 1
  • V. P. Silovanyuk
    • 1
  1. 1.G. V. Karpenko Physicomechanical InstituteAcademy of Sciences of the Ukrainian SSRLvov

Personalised recommendations