Skip to main content
Log in

The spatial structure of turbulence at production wavenumbers using orthonormal wavelets

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Orthonormal wavelet expansions are applied to surface-layer measurements of vertical wind speed under various atmospheric, stability conditions. The orthonormal wavelet transform allows for the unfolding of these measurements into space and scale simultaneously to reveal the large intermittent behavior in space for the turbulent production wavenumbers. Both Fourier and wavelet power spectra indicated the existence of a −1 power law for the vertical velocity measurements at the production wavenumbers. The −1 power law in the turbulent production range was derived from surface-layer similarity theory. A dimensionless skewness, structure function is applied to the wavelet decomposed vertical velocity field to trace the destruction of the shear-or buoyancy-induced anisotropy under various stability conditions. The structure skewness function revealed shear- or buoyancy-induced eddy asymmetry dependence on stability at each scale within the −1 power-law wavenumber range with more isotropy during propagation from smaller to larger wavenumbers. The asymmetry of these events at the turbulent production wavenumbers appeared very localized in space, as well as in scale, and could be described with a simple eddy-overturning model. It is demonstrated that the wavelet transform is suitable for such analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J., and Frisch, U.: 1989, ‘Wavelet Analysis of Turbulence Reveals the Multifractal Nature of the Richardson Cascade’,Nature 338, 51–53.

    Google Scholar 

  • Antonia, R. A. and Raupach, R.: 1993, ‘Spectral Scaling in a High Reynolds Number Laboratory Boundary Layer’,Boundary-Layer Meteorol. 65, 289–306.

    Google Scholar 

  • Barcy, E., Armeodo, A., Frisch, U., Gagne, G., and Hopfinger, E.: 1991, ‘Wavelet Analysis of Fully Developed Turbulence Data and Measurement of Scaling Exponents’, in O. Metais and M. Lesieur (eds.),Turbulence and Coherent Structures, Kluwer Academic Press, 450 pp.

  • Battle, G.: 1987, ‘A Block Spin Construction of Ondelettes, Part I: Lemarie Functions’,Comm. Math. Phys. 110 601–615.

    Google Scholar 

  • Battle, G.: 1992, ‘Cardinal Spline Interpolation of the Block Spin Construction of Wavelets’, in C. Chui (ed.),Wavelets: A Tutorial in Theory and Applications, Academic Press, Inc., 722 pp.

  • Betchov, R. and Yaglom, A. M.: 1971, ‘Comments on the Theory of Similarity as Applied to Turbulence in an Unstably Stratified Fluid’,Izv. Akad. Nauk. SSSR, Ser. Fiz. Atmosf. i Okeana,7, 829–832, in English Translation of the Journal.

    Google Scholar 

  • Beylkin, G., Coifman, R., and Rokhlin, V.: 1991, ‘Fast Wavelet Transforms and Numerical Algorithms I’,Comm. Pure and Appl. Math. XLIV, 141–183.

    Google Scholar 

  • Beylkin, G., Coifman, R., and Rokhlin, V.: 1992, ‘Wavelets in Numerical Analysis’, in M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael (eds.),Wavelets and their Applications, Jones and Bartlett Publishers, Boston, 474 pp.

    Google Scholar 

  • Brutsaert, W.: 1982,Evaporation into the Atmosphere: Theory, History and Applications, Kluwer Academic Puhlishers, 299 pp.

  • Busch, N. E.: 1973, ‘The Surface Boundary Layer’,Boundary-Layer Meteorol. 4, 213–240.

    Google Scholar 

  • Chui, C. K.: 1992,An Introduction to Wavelets, Academic Press, Inc., 264 pp.

  • Collineau, S. and Brunet, Y.: 1993, ‘Detection of Coherent Turbulent Motion above a Forested Canopy: Part I Wavelet Analysis’,Boundary-Layer Meteorol. 65, 357–379.

    Google Scholar 

  • Daubechies, I.: 1988, ‘Orthonormal Bases of Compactly Supported Wavelets’,Comm. Pure and Appl. Math. XLI, 909–996.

    Google Scholar 

  • Daubechies, I.:Ten Lectures on Wavelets, 1992,CBMS-NSF Regional conference series in applied mathematics, S.I.A.M.,61, 357 pp.

  • David, G.: 1992,Wavelets and Singular Integrals on Curves and Surfaces, Springer-Verlag, 109 pp.

  • Erm, L. P. and Joubert, P. N.: 1991, ‘Low-Reynolds-Number Turbulent Boundary Layer’,J. Fluid Mech. 230, 1–44.

    Google Scholar 

  • Everson, R., Sirovich, L., and Sreenivasan, K. R.: 1990, ‘Wavelet Analysis of the Turbulent Jet’,Physical Letters A 145, 314–322.

    Google Scholar 

  • Farge, M.: 1992a, ‘Wavelet Transforms and their Applications to Turbulence’,Ann. Rev. Fluid Mech. 24, 395–457.

    Google Scholar 

  • Farge, M.: 1992b, ‘The Continuous Wavelet Transform of Two Dmensional Turbulent Flows’, in M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat Y. Meyer, and L. Raphael (eds.),Wavelets and their Applications, Jones and Bartlett Publishers, Boston, 474 pp.

    Google Scholar 

  • Farge, M., Goirand, E., Meyer, Y., Pascal, F., and Wickerhauser, M. V.: 1992, ‘Improved Predictability of Two Dimensional Turbulent Flows Using Wavelet Packet Compression’,Fluid Dynamics Research,10, 229–250.

    Google Scholar 

  • Gelb, A., Kasper, J., Nash, R., Price, C., and Sutherland, A.: 1974 in A. Gelb (ed.),Applied Optimal Estimation, MIT Press, 374 pp.

  • Grossmann, A., Kronland-Martinet, R., and Morlet, J.: 1989, ‘Reading and Understanding Continuous Wavelet Transforms’, in J. M. Combes, A. Grossmann, Ph. Tchamitchian (eds.)Wavelets: Time-Frequency Methods and Phase Space, Springer-Verlag, 315 pp.

  • Grossmann, A., and Morlet, J.: 1985, ‘Decomposition of Functions into Wavelets of Constant Shape, and Related Transforms’, in L. Streit (ed.),Mathematics+Physics, Lectures on Recent Results, World Scientific, Singapore.

    Google Scholar 

  • Grossmann, A. and Morlet, J.: 1984, ‘Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape’,SIAM J. Math. Anal.,15, 723–736.

    Google Scholar 

  • Haar, A.: 1910, ‘Zur theorie der orthogonalen funktionensysteme’,Math. Ann. 69, 331–371.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1984, ‘Turbulent Structure, of an Unstable Atmospheric Layer’, in R. Z. Sagdeyev,Nonlinear and Turbulent Processes in Physics, Harwood Acad. Publ.,2, 829–845.

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in unstably Stratified Turbulent Boundary Layer’,J. Fluid Mech. 212, 637–662.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1991, ‘Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstahle Thermal Stratification’, In O. Metais (ed.),Turbulence and Coherent Structures, Kluwer Academic Press, 450 pp.

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’,Quart. J. R. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Katul, G. G. and Parlange, M. B.: 1992, ‘A Penman-Brutsaert Model for Wet Surface Evaporation’,Water Resourc. Res 28, 121–126.

    Google Scholar 

  • Katul, G. G. and Parlange, M. B.: 1994, ‘On the Active Role of Temperature in Surface Layer Turbulence’,J. Atmos. Sci. 51, 2181–2195.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’,Dokl. Akad. Nauk SSSR,4, 299–303.

    Google Scholar 

  • Korotkov, B. N.: 1976, ‘Some Types of Local Self-Similarity of the Velocity Field of Wall Turbulent Flows’,Izv. Akad. Nauk. SSSR, Ser. Mekh. Zhidk. i Gaza,6 35–42.

    Google Scholar 

  • Kraichnan, R.: 1991, ‘Turbulent Cascade and Intermittency Growth’, in J. Hunt, M. Phillips, and D. Williams (ed.),Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, Roy. Soc., 240 pp.

  • Lemarie, P. G.: 1988, ‘Ondelettes à Localisation Exponentielles’,J. Math. Pure et Appl. 67, 227–236.

    Google Scholar 

  • Lesieur, M.: 1987,Turbulence in Fluids, Martinus Nijhoff Publishers 286 pp.

  • Liandrat, J. and Moret-Bailly, F.: 1990, ‘The Wavelet Transform: Some Applications to Fluid Dynamics and Turbulence’,Eur. J. Mech. B/Fluids,9, 1–19.

    Google Scholar 

  • Lumley, J.: 1965, ‘Interpretation of Time Spectra Measured in High Intensity Shear Flows’,Phys. Fluids 6, 1056–1062.

    Google Scholar 

  • Lumley, J.: 1970,Stochastic Tools in Turhulence, Academic Press, 194 pp.

  • Madych, W. R.: 1992, ‘Some Elementary Properties of Multiresolution Analysis ofL 2 (R n), in C. K. Chui (ed.),Wavelets: A Tutorial in Theory and Applications, Academic Press, Inc. 723 pp.

  • Mahrt, L. and Gamage, N.: 1987, ‘Observations of Turbulence in Stratified Flow’,J. Atmos. Sci. 44 1106–1121.

    Google Scholar 

  • Mahrt, L.: 1991, ‘Eddy Asymmetry in the Shear Heated Boundary Layer’,J. Atmos. Sci. 48, 472–492.

    Google Scholar 

  • Mallat, S.: 1989a, ‘A Theory for Multiresolution Signal Decomposition: The Wavelet Representation’,IEEE Trans. Pattern Analysis and Machine Intelligence,11, 674–693.

    Google Scholar 

  • Mallat, S.: 1989b, ‘Multiresolution Approximations and Wavelet Orthonormal Bases ofL 2 (R)’,Trans. Amer. Math. Soc. 315, 69–87.

    Google Scholar 

  • Meneveau, C.: 1991a, ‘Analysis of Turbulence in the Orthonormal Wavelet Representation’,J. Fluid Mech. 232, 469–520.

    Google Scholar 

  • Meneveau, C.: 1991b, ‘Dual Spectra and Mixed Energy Cascade of Turbulence in the Wavelet Representation’,Physical Review Letters 11, 1450–1453.

    Google Scholar 

  • Metais, O. and Lesieur, M.: 1992, ‘Spectral Large Eddy Simulation of Isotropic and Stably Stratified Turbulence’,J. Fluid Mech. 239, 157–194.

    Google Scholar 

  • Metais, O.: 1991, ‘Large-Eddy Simulation of Turbulent Scalar: The Influence of Intermittency’, in J. Jimenez (ed.),The Global Geometery of Turbulence, Plenum Press, pp. 155–166.

  • Meyer, Y.: 1989, ‘Orthonormal Wavelets’, in J. M. Combes, A. Grossmann, and Ph. Tchamitchian (eds.),Wavelets: Time-Frequency Methods and Phase Space, Springer-Verlag, 315 pp.

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’,Tr. Geofiz. Inst. Akad. Nauk SSSR 151, 163–187.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, in J. Lumley (ed.),Statistical Fluid Mechanics Vol. I, MIT Press, 768 pp.

  • Monin, A. S. and Yaglom, A. M.: 1975, in J. Lumley (ed.),Statistical Fluid Mechanics Vol. II, MIT Press, 874 pp.

  • Parlange, M. B. and Katul, G. G.: 1992, ‘An Advection-Aridity Evaporation Model’,Water Resour. Res. 28, 127–132.

    Google Scholar 

  • Perry, A. E. and Abell, S. J.: 1975, ‘Scaling Laws for Pipe Flow Turbulence’,J. Fluid Mech. 67, 257–271.

    Google Scholar 

  • Perry, A.E., Henbest, S., and Chong, M. S.: 1986, ‘A Theoretical and Experimental Study of Wall Turbulence’,J. Fluid Mech. 165, 163–199.

    Google Scholar 

  • Powell, D. and Elderkin, C. E.: 1974, ‘An Investigation of the Application of Taylor's Hypothesis to Atmospheric Boundary Layer Turbulence’,J. Atmos. Sci. 31, 990–1002.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1990,Numerical Receipes: The Art of Scientific Computing, Cambridge University Press, 702 pp.

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’,Appl. Mech. Rev. 44, 1–25.

    Google Scholar 

  • She, Z.: 1991, ‘Intermittency and Non-Gaussian Statistics in Turbulence’,Fluid Dynamics Research 8, 143–158.

    Google Scholar 

  • Sirivat, A. and Warhaft, Z.: 1983, ‘The Effect of a Passive Cross-Stream Temperature Gradient on the Evolution of Temperature Variance and Heat Flux in Grid Turbulence’,J. Fluid Mech. 128, 323–346.

    Google Scholar 

  • Stanisic M. M.: 1985,The Mathematical Theory of Turbulence, Springer-Verlag, 429 pp.

  • Stull, R.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 666 pp.

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’,Proc. Roy. Soc., A CLXIV, 476–490.

    Google Scholar 

  • Tchen, C. M.: 1953, ‘On the Spectrum of Energy in Turbulent Shear Flow’,J. Res. National Bureau of Standards 50, 51–62.

    Google Scholar 

  • Tennekes, H. and Lumley, J.: 1972,A First Course in Turbulence, MIT Press, 300 pp.

  • Yamada, M. and Ohkitani, K.: 1990 ‘Orthonormal Expansion and its Application to Turbulence’,Prog. Theor. Phys.: Progress Letters 86, 819–823.

    Google Scholar 

  • Yamada, M. and Ohkitani, K.: 1991a, ‘Orthonormal Wavelet Analysis of Turbulence’,Fluid Dynamics Research 8, 101–115.

    Google Scholar 

  • Yamada, M. and Ohkitani, K.: 1991b, ‘An Identification of Energy Cascade in Turbulence by Orthonormal Wavelet Analysis’,Prog. Theor. Phys. 86, 799–815.

    Google Scholar 

  • Zilitinkevich, S. S.: 1971, ‘On the Turbulence and Diffusion Under Free Convection Conditions’,Izv. Akad. Nauk. SSSR, Ser. Fiz. Atmosf. i Okeana,7, 1263–1269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katul, G.G., Parlange, M.B. The spatial structure of turbulence at production wavenumbers using orthonormal wavelets. Boundary-Layer Meteorol 75, 81–108 (1995). https://doi.org/10.1007/BF00721045

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00721045

Keywords

Navigation