Boundary-Layer Meteorology

, Volume 75, Issue 1–2, pp 1–24 | Cite as

Stable boundary layers: observations, models and variability part II: Data analysis and averaging effects

  • S. H. Derbyshire
Article

Abstract

As argued in Part I (Derbyshire, 1995), variability is a key issue in stable boundary layers, and differences in variability between observations and idealized models may imply sytematic biases. Here we discuss how data analysis can be geared to allow for variability and thus consistency with models. Instrumental errors, smoothing methods and vertical discretization are considered. We then show how statistical averaging broadly improves the agreement of ‘heterogeneous’ results in Part I with the Brost-Wyngaard closure. Recommendations are made for the information needed to analyze apparent differences between ‘homogeneous’ and ‘heterogeneous’ stable boundary layers.

Keywords

Data Analysis Boundary Layer Statistical Average Idealize Model Apparent Difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, ‘Flux Parametrization and Land Surfaces in Atmospheric Models’,J. Appl. Meteorol. 30, 327–341.Google Scholar
  2. Blyth, E. M., Dolman, A. J., and Wood, N.: 1993, ‘Effective Resistance to Sensible- and Latent-Heat Flux in Heterogeneous Terrain’,Quart. J. Roy. Meteorol. Soc. 119, 423–442.Google Scholar
  3. Candy, J. V.: 1988,Signal Processing: The Modern Approach. McGraw-Hill, Singapore, 386 pp.Google Scholar
  4. Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’,J. Atmos. Sci. 6, 1041–1052.Google Scholar
  5. Coleman, G. n., Ferziger, J. H., and Spalart, P. R.: 1992, ‘Direct Simulation of the Stably Stratified Turbulent Ekman Layer’,J. Fluid Mech. 244, 677–712.Google Scholar
  6. Derbyshire, S. H.: 1994, ‘A “Balanced” Approach to Stable Boundary Layer Dynamics’. To appear inJ. Atmos. Sci. Google Scholar
  7. Derbyshire, S. H.: 1995, ‘Stable Boundary Layers: Observations, Models and Variability. Part I: Modelling and Measurements’,Boundary-Layer Meteorol. 74, 19–54.Google Scholar
  8. Derbyshire, S. H. and Wood, N.: 1994, ‘The Sensitivity of Stable Boundary Layers to Small slopes and Other Influences’, in N. Rockliff and I. P. Castro (eds.),Proc. 4th IMA Conf. Waves and Stably-Stratified Turbulence.Google Scholar
  9. Dharssi, I., Lorenc, A., and Ingleby, N. B.: 1992, ‘Treatment of Gross Errors Using Maximum Probability Theory’,Quart. J. Roy. Meteorol. Soc. 118, 1017–1036.Google Scholar
  10. Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 22, 21–48.Google Scholar
  11. Grant, A. L. M.: 1994, ‘Wind Profiles in the Stable Boundary Layer, and the Effect of Low Relief’,Quart. J. Roy. Meteorol. Soc. 120, 27–46.Google Scholar
  12. Hicks, B. B.: 1978, ‘Some Limitations of Dimensional Analysis and Power Laws’,Boundary-Layer Meteorol. 14, 567–579.Google Scholar
  13. Kalnay de Rivas, E.: 1972, ‘On the Use of Non-Uniform Grids in Finite-Difference Equations’,J. Comp. Phys. 10, 202.Google Scholar
  14. Lorenc, A. C.: 1988, ‘Optimal Nonlinear Objective Analysis’,Quart. J. Roy. Meteorol. Soc. 114, 205–240.Google Scholar
  15. Mahrt, L.: 1987, ‘Grid-Averaged Surface Fluxes’,Mon. Wea. Rev. 115, 1550–1560.Google Scholar
  16. Maryon, R. H.: 1990, ‘A Statistical Representation of Sub-Grid Variation in Mixing-Length Models of the Boundary Layer’,Boundary-Layer Meteorol. 53, 371–400.Google Scholar
  17. Mason, P. J.: 1988, ‘The Formation of Areally-Averaged Roughness Lengths’,Quart. J. Roy. Meteorol. Soc. 114, 399–420.Google Scholar
  18. Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large Eddy Simulation of the Stably-Stratified Boundary Layer’,Boundary-Layer Meteorol. 53, 117–162.Google Scholar
  19. Piacsek, S. A. and Williams, G. P.: 1970, ‘Conservation Properties of Convection Difference Schemes’,J. Comp. Phys. 6, 392–405.Google Scholar
  20. Taylor, P. A.: 1987, ‘Comments and Further Analysis on the Effective Roughness Length for Use in Numerical Three-Dimensional Models’,Boundary-Layer Meteorol. 39, 403–419.Google Scholar
  21. Wood, N. and Mason, P. J.: 1991, ‘The Influence of Static Stability on the Effective Roughness Lengths for Momentum and Heat Transfer’,Quart. J. Roy. Meteorol. Soc. 117, 1025–1056.Google Scholar

Copyright information

© British Crown Copyright 1995

Authors and Affiliations

  • S. H. Derbyshire
    • 1
  1. 1.MRU CardingtonShortstownEngland

Personalised recommendations