Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. O. P. Ostash and V. T. Zhmur-Klimenko, “Fatigue crack growth in metals at low temperatures, a review,” Fiz.-Khim. Mekh. Mater., No. 2, 17–29 (1987).

    Google Scholar 

  2. R. I. Stephens, J. H. Chung, and G. Glinka, “Low temperature fatigue behavior of steels — a review,” SAE Techn. Paper Series, No. 790517 (1979).

  3. O. P. Ostash and V. V. Panasyuk, “Theory of fatigue crack initiation and growth,” Fiz.- Khim. Mekh. Mater., No. 1, 13–21 (1988).

    Google Scholar 

  4. O. N. Romaniv, “Structural concept of the fatigue limits of structural alloys,” Fiz.- Khim. Mekh. Mater., No. 1, 106–116 (1986).

    Google Scholar 

  5. RD SO-345-82. Procedure Instructions. Strength Calculations and Tests in Engineering. Methods of Mechanical Testing of Metals. Determination of Cracking Resistance (Fracture Toughness) Characteristics in Cyclic Loading [in Russian], Standartov, Moscow (1983).

  6. O. P. Ostash, V. T. Zhmur-Klimenko, E. M. Kostyk, and A. B. Kunovskii, “Effect of crack closure and load cycle asymmetry on the kinetic diagrams of fatigue failure at normal and low temperatures,” Fiz.-Khim. Mekh. Mater., No. 3, 58–63 (1987).

    Google Scholar 

  7. V. V. Panasyuk, M. P. Savruk, A. I. Zboromirskii, et al., “A specimen for examining the relationships governing crack initiation,” Fiz.-Khim. Mekh. Mater., No. 4, 66–77 (1984).

    Google Scholar 

  8. V. V. Panasyuk, O. P. Ostash, E. M. Kostyk, et al., “Cyclic cracking resistance of aluminum alloys in the stages of crack initiation and growth,” Fiz.-Khim. Mekh. Mater., No. 5, 38–46 (1987).

    Google Scholar 

  9. A. Ya. Krasovskii, O. P. Ostash, V. A. Stepanenko, and S. Ya. Yarema, “Effect of low temperatures on the rate and microfractographic features of fatigue crack propagation in low-carbon steel,” Probl. Prochn., No. 4, 74–78 (1977).

    Google Scholar 

  10. E. Macherauch and W. Ryke, “Effect of the structure, production method, and loading on fatigue strength,” in: Behavior of Steel in Cyclic Loading, V. Dahl (ed.) [Russian translation], Metallurgiya, Moscow (1983), pp. 194–246.

    Google Scholar 

  11. O. N. Romaniv, B. N. Andrusiv, and V. I. Borsukevich, “Crack formation in fatigue of metals, a review,” Fiz.-Khim. Mekh. Mater., No. 1, 3–13 (1988).

    Google Scholar 

  12. O. N. Romaniv, A. N. Tkach, and A. S. Krys'kiv, “Examination of the reversible temper brittleness of steels by fracture mechanics methods,” Fiz.-Khim. Mekh. Mater., No. 2, 41–47 (1980).

    Google Scholar 

  13. O. N. Romaniv, G. N. Nikiforchin, and A. S. Krys'kiv, “Using fracture mechanics criteria for evaluating the hydrogen brittleness of high-strength steels,” Fiz.-Khim. Mekh. Mater., No. 6, 54–60 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, No. 4, pp. 63–71, July–August, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostash, O.P., Kostyk, E.M. & Levina, I.N. Effect of low temperature on the initiation and growth of fatigue cracks in 08kp steel with different grain size. Mater Sci 24, 385–392 (1989). https://doi.org/10.1007/BF00720650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00720650

Keywords

Navigation